Article Accepted in IEEE Transactions on Computers

Manil Dev Gomony just had a journal article entitled “A Globally Arbitrated Memory Tree for Mixed-Time-Criticality Systems” accepted in the high-impact journal IEEE Transactions on Computers. This article extends a conference paper published at DATE in 2015 that was called “A Generic, Scalable and Globally Arbitrated Memory Tree for Shared DRAM Access in Real-Time Systems” that was published in collaboration with Jamie Garside and Neil Audsley from University of York. The original paper explained the design and efficient hardware implementation of a transaction arbiter for real-time systems that could be configured to behave like any of five well-known arbiters, i.e. TDM, Round Robin, Credit-Controlled Static Priority, Priority-Based Scheduler, and Frame-Based Static Priority. The key feature of the arbiter is that it is distributed, which means that accounting and enforcement is not done in a single centralized location, allowing it to scale to systems with many resource clients without negatively impacting the maximum frequency at which it operates.

The journal article extends the original conference paper by adding more detail and examples on the design of the memory tree, as well as improving positioning. However, it also extends the scope of the work to consider more complex Mixed-Time-Criticality systems where some clients are more concerned about average-case than worst-case performance. It also considers that the requirements of the clients may be diverse, i.e. that some may have high bandwidth requirements and are latency-tolerant, while others have low bandwidth requirements, but are latency-critical. This is diversity of requirements is addressed by showing how the memory tree supports the transaction arbiter to be chosen individually per client rather than once for the entire system. For example, some real-time clients may be configured by non-work-conserving TDM arbitration to get predictable bandwidth and latency while enjoying complete temporal isolation from other clients, which simplifies integration and certification. Other clients sharing the same resource, may be scheduled using e.g. using a work-conserving Frame-Based Static Priority scheduler to reflect an interest in low average latency while still distinguishing their relative latency-sensitivity. The memory tree supports any combination of the mechanisms discussed above, but we provide a formal analysis of the mixed arbitration algorithm explained above. The article demonstrates the benefits of this approach on a VHDL hardware implementation, as well as its cost in terms of area and power compared to centralized non-mixed arbitration policies by means of ASIC synthesis.

Manil Dev Gomony Successfully Defends PhD Thesis!

Today, Manil Dev Gomony has successfully defended his PhD thesis entitled “Scalable and Bandwidth-Efficient Memory Subsystem Design for Real-Time Systems“. The thesis proposes an architecture for a real-time memory subsystem that scales well in terms of area and maximum synthesizable frequency with an increasing number of memory clients. This subsystem architecture comprises a memory interconnect called Globally Arbitrated Memory Tree (GAMT) a Multi-Channel Memory Controller (MCMC), as well as a technique to couple those components and have a single point of arbitration for both resources. The thesis also proposes a design flow for automatically choosing the memory device, mapping clients to memory channel, and configure arbiters to satisfy client requirements.

Among Manil’s achievements, we specifically highlight two achievements with respect to publishing. First of all, he had a paper accepted at the DATE conference every year during his PhD. Secondly, none of his publications were ever rejected anywhere. This shows that Manil managed to publish in competitive forums in his field and that his work was well-received. Currently, Manil works as a Researcher at Bell Laboratories of Alcatel-Lucent in Belgium. We wish him the best of luck in his future career!

Memory Team has Two Papers Accepted at DATE 2015

The notifications from the DATE conference are in and the Memory Team scores 2 out of 2, just like in 2014. The first paper entitled “A Generic, Scalable and Globally Arbitrated Memory Tree for Shared DRAM Access in Real-Time Systems” was first-authored by Manil and is a collaboration with Jamie Garside and Neil Audsley from University of York. The paper proposes a memory interconnect for shared memory architectures in many-core systems. A main architectural feature is that the interconnect is heavily pipelined enabling it to be synthesized at high frequencies even with a large number of clients. Another highlight is that it has global arbitration that can be programmed to behave like several different arbitration mechanisms, such as TDM, CCSP and FBSP.

The second paper “Retention Time Measurements and Modelling of Bit Error Rates of WIDE I/O DRAM in MPSoCs”was first-authored by our colleagues at Kaiserslautern University of Technology in collaboration with Sven Goossens from our Memory Team. This paper looks into the thermal behavior of 3D-stacked WIDE I/O DRAM and compares its impact on retention time and bit error rates to conventional 2D DRAM chips.

Article in ACM Transactions on Embedded Computing Systems (TECS)

Manil Dev Gomony just had his first journal article accepted in ACM Transactions on Embedded Computing Systems. The article is entitled “A Real-Time Multi-Channel Memory Controller and Optimal Mapping of Memory Clients to Memory Channels” and is an extension of his DATE paper from 2013, which was the first paper to provide architectures and techniques for multi-channel memory controllers in real-time systems.

The two main contributions of the article are: 1) A configurable real-time multi-channel memory controller architecture with a novel method for logical-to-physical address translation. 2) Two design-time methods to map memory clients to the memory channels, one an optimal algorithm based on an integer programming formulation of the mapping problem, and the other a fast heuristic algorithm. The mapping algorithms are experimentally evaluated, showing benefits over two state-of-the-art mapping algorithms. Finally, a case study is presented that demonstrates how to configure a Wide IO DRAM in a High-Definition (HD) video and graphics processing system to emphasize the practical applicability and effectiveness of the work.

Two Papers Accepted at DATE 2014

Today we celebrate that the Memory Team had both papers submitted to DATE accepted as full papers at the conference. The first paper was written by Manil Dev Gomony and is entitled “Coupling TDM NoC and DRAM Controller for Cost and Performance Optimization of Real-Time Systems”. This paper discusses area, power and performance benefits of coupling the arbitration in a TDM NoC with the memory controller arbitration, thereby reducing the number of arbitration points on the path from processor to memory. The second paper entitled “Exploiting Expendable Process-Margins in DRAMs for Run-Time Performance Optimization” was first-authored by Karthik Chandrasekar. This paper shows how to exploit excessive process margins in DRAMs by proposing a methodology for how to determine the minimum timings that a memory can safely run at, thereby improving performance.