Benny Akesson

Senior Research Fellow @ ESI (TNO) | Endowed Professor @ University of Amsterdam

TNO-ESI Cloud Continuum Workshop

The TNO-ESI Cloud Continuum workshop, an informal hybrid event that attracted just over twenty participants, took place at ESI on February 21. The goals of this workshop were to: 1) connect applied and academic researchers in the area of cloud continuum in the Netherlands, 2) disseminate research results from ongoing research projects, and 3) identify possibilities for collaboration. Benny Akesson, the organizer of the event, opened the workshop by presenting some drivers for cloud adoption/integration in the high-tech industry, as well as the work done by ESI in the ArchViews and TRANSACT projects related to performance observability. This was followed by four invited speakers from Eindhoven University of Technology and Vrije Universiteit Amsterdam. The topics of the presentations ranged from reference architectures for the cloud continuum, root-cause analysis in the continuum, modelling and calibration of cyber-physical systems deployed in the continuum, to performance variability of cloud/edge systems. All in all, it was a nice and successful event that showcased parts of the body of work currently going on in this exciting area. Thank you Matthijs Jansen, Jeroen Voeten, Mahtab Modaber, and Panagiotis Giannakopoulos for your presentations.

Paper Accepted at IEEE SysCon 2023

Our paper entitled “Thirteen Concepts to Play it Safe with the Cloud” has been accepted at IEEE International Systems Conference (SysCon), that will take place in Vancouver, Canada on April 17-20, 2023. The paper discusses how edge and cloud technologies has the potential to enhance safety-critical CPS, also in regulated environments. This is only possible when safety, performance, cyber security, and privacy of data are kept at the same level as in on-device only safety-critical CPS. To this end, this paper presents thirteen selected safety and performance concepts for distributed device-edge-cloud CPS solutions. This early result of the TRANSACT project aims to ensure needed end-to-end performance and safety levels from an end-user perspective, to extend edge and cloud benefits of more rapid innovation and inclusion of value-added services, also to safety-critical CPS.

Literature Review on Scalable System-level Simulation

Herman Kelder has joined the DSE2.0 research project as a master student. DSE2.0 is a project that aims to propose a methodology for design-space exploration of complex distributed cyber-physical systems, like lithography machines manufactured by ASML. One of the great challenges is to improve the scalability to handle the complexity of such systems, a challenge that needs to be addressed both in terms of how the system (performance) is modelled and evaluated (simulated) for a particular design point, as well as how design points to evaluate is being chosen. Hermans thesis will focus on how to improve the scalability of system-level simulation to allow more design points to be evaluated faster.

One of Herman’s first assignments was to put together a literature review on this topic. The literature review, entitled “Exploring Scalability in System-Level Simulation Environments for Distributed Cyber-Physical Systems“, investigates state-of-the-art scalability techniques for system-level simulation environments, i.e. Simulation Campaigns, Parallel Discrete Event Simulations (PDES), and Hardware Accelerators. The goal is to address the challenge of scalable Design Space Exploration (DSE) for dCPS, discussing such approaches’ characteristics, applications, advantages, and limitations. The conclusion recommends starting with simulation campaigns as those provide increased throughput, adapt to the number of tasks and resources, and are already implemented by many state-of-the-art simulators. Nevertheless, further research has to be conducted to define, implement, and test a sophisticated general workflow addressing the diverse sub-challenges of scaling system-level simulation environments for the exploration of industrial-size distributed Cyber-Physical Systems.

We look forward to working with Herman and seeing how his research develops along these directions.

RTSS@Work 2022 Proceedings Online

I have had the honor to serve as the chair of RTSS@Work 2022, the open demo session organized as a part of the 43rd IEEE Real-Time Systems Symposium, held in Houston, Texas on December 6, 2022. The goal of RTSS@Work is to provide a platform for researchers to present prototypes, tools, simulators, and systems, which extend the state-of-the-art in Real-Time Technologies and Techniques. It augments the traditional forum by enabling presenters to demonstrate working systems, thereby allowing them to directly engage with the audience, generate interest in new research topics, and encourage wider adoption of common frameworks.

This year’s RTSS@Work was very special, as it was the first physical instance after years of virtual events due to the COVID pandemic. It was nice to meet each other again and to physically demonstrate and discuss the work we have done. While the COVID pandemic reduced the number of submissions in previous years, I am happy to announce that we had nine demo submissions this year, on par with the pre-pandemic era. The program committee, comprising seven researchers, selected eight demos to appear in the session. I would like to thank the program committee for accepting my invitation and for spending their time reviewing and selecting the demo abstracts. I would also like to thank the authors for submitting to RTSS@Work, for delivering the camera-ready abstracts on time, and for demonstrating their work at the conference.

The proceedings of RTSS@Work 2022 are now available online.

Mastering Complexity – Academia, Industry and TNO working intimately together

The 3rd Annual Program Day for the Mastering Complexity (MasCot) Partnership program took place on Wednesday October 19. This time, the event was hosted by the University of Amsterdam and was held in the Startup Village at Science Park. Approximately 40 participants from academia, industry, NWO, and TNO attended the event. After a brief introduction, project updates were given from the four academic projects in the program:

  1. Scheduling Adaptive Modular Flexible Manufacturing Systems (SAM-FMS)
  2. Programming and Validating Software Restructurings
  3. TiCToC – Testing in Times of Continuous Change
  4. Design Space Exploration 2.0: Towards Optimal Design of Complex, Distributed Cyber Physical Systems

This was followed by Q&A and a short interaction where participants tried to identify the general complexity management techniques used in the projects. In the afternoon, there were breakout sessions focusing on the way-of-working in MasCot projects, how to best involve and engage all stakeholders in the project: industry and academic partners, users, and ESI liaisons. This allowed the different projects to listen to how the others organized their work, e.g. in terms of regular meetings and working on industry location, during the first years and reflect on the best way-of-working to reach their goals for the next stage.

The event was followed by a social program with informal networking set to the tune of a boat ride with drinks on the beautiful canals of a sunny autumn-colored Amsterdam and a dinner at the restaurant In de Waag.

Specification, Verification, and Adaptation of Software Interfaces using Eclipse ComMASuite

Software interfaces are key to realizing the benefits of component-based software architectures, yet specifying interfaces is difficult and may result in problems in the protocol specification itself, or in its interactions with clients. This problem is addressed through a six-step methodology for specification, verification, and adaptation of software interfaces. The methodology builds on the open-source tool Eclipse ComMASuite, developed by TNO-ESI partners in an open innovation eco-system. The specification and verification steps have been contributed back to the community and are supported by a two-day course named “Modelling and Analysis of Component-based Systems”, available from TNO-ESI in both an academic and industry version.

Please read my blog post that describes the methodology and demonstrates it step-by-step from a user perspective through a simple case study in a video.

Position paper accepted at DSD 2022

I am pleased to announce that our position paper “Design Space Exploration for Distributed Cyber-Physical Systems: State-of-the-art, Challenges, and Directions” has been accepted for publication at the Euromicro Conference on Digital System Design (DSD). This is the first accepted paper from the DSE2.0 project, a collaboration between University of Amsterdam, Leiden University, and ASML. The project is a part of the Mastering Complexity (MasCot) partnership program funded by ESI.

The paper addresses the challenge of designing industrial cyber-physical systems (CPS), which are often complex, heterogeneous, and distributed computing systems that typically
integrate and interconnect a large number of hardware and software components. Producers of these distributed Cyber-Physical Systems (dCPS) require support for making (early) design decisions to avoid expensive and time consuming oversights. This calls for efficient and scalable system-level Design Space Exploration (DSE) methods for dCPS. In this position paper, we review the current state of the art in DSE, and argue that efficient and scalable DSE technology for dCPS is more or less non-existing and constitutes a largely unchartered research area. Moreover, we identify several research challenges that need to be addressed and discuss possible directions for targeting such DSE technology for dCPS.

Proposal Building Dutch Real-time Systems Community Granted

Recently, I submitted a small proposal worth 5K euro to the 4TU.NIRICT Call Community Funding together with Mitra Nasri and Geoffrey Nelissen, both from Eindhoven University of Technology, and Kuan-Hsun Chen from University of Twente. The purpose of the proposal was for creating a Dutch Real-time Systems community and stimulate collaboration both nationally and at the European level. Earlier this week, we were notified that the proposal was granted!

We plan to use the funding for building a Dutch real-time systems community by organizing a workshop in the Netherlands with several invited speakers (around 6) from other European countries, followed by a consolidation event after 3 months. The duration of the workshop will two days, and the target audience is the domain researchers affiliated with the 4TU and UvA. On each workshop day, there will be keynotes, rapid pitch talks, interactive panels, reviews of funding opportunities, and social meetings. The one-day consolidation event, (e.g., three months later) will focus on strengthening the Dutch real-time system community vision and on consolidating the initiatives planned at the workshop.

I look forward to working with Mitra, Geoffrey, and Kuan to organize a strong real-time systems community in the Netherlands through this grant, and through other means.


Survey of Industry Practice on Top Lists of Real-time Systems Journal 2021

I am pleased to see that our work “A comprehensive survey of industry practice in real-time systems” made both the lists for most downloaded and most cited articles in the Real-time Systems journal of 2021. I hope this is an indicator that people appreciate the paper, but also that it inspires other to pursue empirical survey-based or interview-based research in the area of real-time systems.

Next week, Mitra Nasri will pitch the case for empirical research into industry practice and perspective in real-time systems at ECRTS. Don’t miss the opportunity to hear her speak and share your thoughts on this topic and how it may help the field forward. For those of you that are not able to attend ECRTS, you can read my blog making the case for empirical survey-based research here.

Paper Accepted at PNSE 2022

I am happy to announce that the paper “Partial Specifications of Component-based Systems using Petri Nets” has been accepted for publication at the International Workshop on Petri Nets and Software Engineering (PNSE) 2022. This paper was first-authored by Bart-Jan Hilbrands, a (former) student in the Master of Software Engineering program at the University of Amsterdam, who did his master thesis project under the supervision of myself and my ESI colleague Debjyoti Bera. The master thesis project was conducted in the context of the DYNAMICS project, a bi-lateral research project between ESI and Thales, which looked into specification, verification, and adaptation of software interfaces.  This publication is a good example of how a good master thesis can be turned into a publication.

The paper addresses the problem of verifying correctness properties, such as absence of deadlocks, livelocks, and buffer overflows, in software components with multiple inter-dependent interfaces. An approach based on partial specification of dependencies between interfaces, expressed as a set of functional constraints, is proposed in the paper. The papers presents and formalizes three commonly occurring functional constraints and provides algorithms for encoding them into a Petri net representation of the interfaces, enabling interface verification through reachability analysis. The approach has been implemented and demonstrated using ComMA.