Paper Accepted at DATE 2018

Another paper written with my former colleagues at CISTER has been accepted. The paper is entitled “Mixed-criticality Scheduling with Memory Bandwith Regulation” and appear at DATE 2018. The paper considers the problem that existing schedulability analyses for mixed-criticality multi-core systems do not consider task interference in shared platform resources, such as memories, potentially making them optimistic and unsafe. We address this issue by formulating a schedulability analysis for mixed-criticality fixed-priority-scheduled multi-core systems using per-core memory access regulation. We also propose multiple heuristics for memory bandwidth allocation and task-to-core assignment. The analysis and heuristics are implemented in a tool and evaluated through extensive experiments.

Two Papers Accepted at DATE 2014

Today we celebrate that the Memory Team had both papers submitted to DATE accepted as full papers at the conference. The first paper was written by Manil Dev Gomony and is entitled “Coupling TDM NoC and DRAM Controller for Cost and Performance Optimization of Real-Time Systems”. This paper discusses area, power and performance benefits of coupling the arbitration in a TDM NoC with the memory controller arbitration, thereby reducing the number of arbitration points on the path from processor to memory. The second paper entitled “Exploiting Expendable Process-Margins in DRAMs for Run-Time Performance Optimization” was first-authored by Karthik Chandrasekar. This paper shows how to exploit excessive process margins in DRAMs by proposing a methodology for how to determine the minimum timings that a memory can safely run at, thereby improving performance.

Memory Team Scores Four out of Four Accepted Papers at DATE 2013!

The preliminary author notification for DATE 2013 is now available on the conference website and it reveals that the memory team scores an incredible four accepted papers out of the four submitted, resulting in an acceptance ratio of 100% for the team! The four paper titles are:

The papers cover topics ranging from memory controller architectures, configuration, and power modeling for Wide I/O memories to open-page policies in real-time memory controllers and a comparison between the tightness of bounds for the latency-rate abstraction and cycle-accurate simulation. These papers are also evidence of the many recent successful collaborations as there are authors from CISTER-ISEP Research Unit, Fortiss, and the Technical Universities in Eindhoven, Kaiserslautern and Munich.