Call for Papers: Special Issue on Model-Driven System-Performance Engineering for CPS

I’m honored to serve as Guest Editor for a special issue of IET Cyber-Physical Systems: Theory and Applications focused on Model-Driven System-Performance Engineering for CPS. This issue is a collaboration with Twan Basten (Eindhoven University of Technology), Arvind Easwaran (Nanyang Technological University), and Marilyn Wolf (University of Nebraska-Lincoln).

We invite submissions from both academia and industry across various application domains. If you’re working in this area, consider contributing your research! The submission deadline is November 1, 2024. Feel free to reach out if you have any questions!


Model-Driven System-Performance Engineering for CPS

Submission deadline: Friday, 1 November 2024
Expected Publication Month: June 2025

System performance refers to the amount of useful work done by a system within predefined quality constraints. System performance often brings the competitive advantage for cyber-physical systems in domains like autonomous driving, chip manufacturing and production systems in general, healthcare, the smart grid, precision agriculture, and so on. To meet market demands for product and system quality, system customization, and a low total cost of ownership, systems need to meet ever more ambitious targets relating to system performance. Performance is a cross-cutting system-level concern, with intricate relations to other system-level concerns like quality, cost, energy efficiency, security, reliability, and customizability. Model-driven system-performance engineering (MD-SysPE) for CPS is essential to improve time-to-quality and the cost-performance ratio of complex systems.

This special issue invites any contributions in model-driven system-performance engineering for CPS that are of interest to the academic and industrial CPS community at large. Original research papers, industrial applications and case studies, and surveys on relevant topics are welcome.

Topics for this call for papers include but are not restricted to:

  • Multi-domain modelling, analysis, and optimization of performance aspects
  • Performance views in system architecture
  • Modelling and analysis of trade-offs with other system qualities
  • Modelling and analysis across abstraction levels
  • Design-space exploration methods
  • Synthesis methods targeting performance
  • Scheduling, control in relation to performance
  • Time-predictable (software) execution
  • Data-driven performance analysis and optimization
  • AI methods for performance analysis, optimization, diagnostics
  • Performance monitoring
  • Run-time adaptation and optimization
  • Performance debugging and diagnostics
  • Model learning for performance
  • Performance validation, verification, and testing

Master Thesis Shines Light on Hardware Dimensioning for Cyber-Physical Systems

On Wednesday, Marijn Vollaard defended his master thesis “Hardware Dimensioning for Microservice-based Cyber-Physical Systems: A Profiling and Performance Prediction Method” at the University of Amsterdam. This research has been supervised by Ben Pronk and myself as a part of a project with TNO-ESI.

The thesis addresses the problem of determining the number of homogeneous compute nodes needed for a particular variant of a cyber-physical system to meet its timing requirements. This is important in early discussions with customers and bidding processes, since it affects the size and cost of the resulting system. To this end, the thesis proposes a structured hardware dimensioning methodology comprising a profiling method and a performance prediction method. The four novel contributions of the thesis are: 1) A component-based profiling method, 2) a performance prediction method, 3) a structured hardware dimensioning methodology, and 4) validation of the approach, using a case study that represents a prototype of a CPS. Experimental evaluations on the case study show that the predicted performance differs from measurements on the application by at most 20%, which is satisfactory for hardware dimensioning decisions for new product variants.

The defense went well and Marijn confidently presented his story and convincingly answered the questions of the audience. The examination committee, impressed by his work, awarded his thesis a well-deserved grade of 8. As we bid farewell to Marijn, embarking on his next career adventure, we also extend our heartfelt congratulations. He certainly has much to be proud of. We wish him all the best on his travels and in his future pursuits.

Master’s Student Marijn Vollaard Shines with Study on Hardware Dimensioning for Microservice Applications in Cyber-Physical Systems

Our master’s student, Marijn Vollaard, has achieved a significant milestone by completing and presenting his literature study titled “Hardware Dimensioning for Microservice Applications in Cyber-Physical Systems: Current Directions and Challenges” The study addresses the challenge of dimensioning the number of compute nodes required to meet the performance demands of microservice-based applications in cyber-physical systems. It thoroughly reviews an extensive body of literature on application and system profiling, performance prediction, and design-space exploration to establish the current state of knowledge in this field. The survey culminates in a discussion about how the surveyed literature applies to microservice applications, the cyber-physical systems context, and the problem of hardware dimensioning. Overall, this is a nice piece of work with a lot of references presented in a systematic way. Congratulations to Marijn for his great effort!”

Bridging the Gap: Rethinking Real-Time Systems for Industry Success and Model-Driven Performance Engineering

The real-time systems community is shrinking and needs to bridge the gap between academic research an industry practice. In my pitch at ECRTS, I shared our view on model-driven system performance engineering for cyber-physical systems and encouraged the community increase its scope and take a broader responsibility for timing-related issues in systems to achieve those goals. This means working in more of the focus areas that we have identified in our vision and validated with our industry partners, but also reconsidering some directions in areas where work is already taking place. This means less focus on hard real-time requirements and formal methods and more focus on:

• system-level KPIs instead of meeting deadlines in subsystems
• soft real-time requirements
• timing requirements beyond software
• system performance modelling, model calibration, and model learning
• data-driven performance analysis, optimization, verification, and diagnostics, e.g. using traces

I encouraged the community to have a look at our vision for model-based system performance engineering for industrial cyber-physical systems and asked to think about how they could contribute through their current and future work.

Please have a look at our vision here.

Thanks to Bram van der Sanden, Kuan-Hsun Chen, Mitra Nasri, Geoffrey Nelissen, and Twan Basten for their help preparing the pitch.

TNO-ESI Cloud Continuum Workshop Connects Researchers and Promotes Collaboration in the Netherlands

The TNO-ESI Cloud Continuum workshop, an informal hybrid event that attracted just over twenty participants, took place at ESI on February 21. The goals of this workshop were to: 1) connect applied and academic researchers in the area of cloud continuum in the Netherlands, 2) disseminate research results from ongoing research projects, and 3) identify possibilities for collaboration. Benny Akesson, the organizer of the event, opened the workshop by presenting some drivers for cloud adoption/integration in the high-tech industry, as well as the work done by ESI in the ArchViews and TRANSACT projects related to performance observability. This was followed by four invited speakers from Eindhoven University of Technology and Vrije Universiteit Amsterdam. The topics of the presentations ranged from reference architectures for the cloud continuum, root-cause analysis in the continuum, modelling and calibration of cyber-physical systems deployed in the continuum, to performance variability of cloud/edge systems. All in all, it was a nice and successful event that showcased parts of the body of work currently going on in this exciting area. Thank you Matthijs Jansen, Jeroen Voeten, Mahtab Modaber, and Panagiotis Giannakopoulos for your presentations.

Ensuring Safety, Performance, and Security in Cloud-Enabled CPS: Accepted Paper Presents Thirteen Concepts at IEEE SysCon 2023

Our paper entitled “Thirteen Concepts to Play it Safe with the Cloud” has been accepted at IEEE International Systems Conference (SysCon), that will take place in Vancouver, Canada on April 17-20, 2023. The paper discusses how edge and cloud technologies has the potential to enhance safety-critical CPS, also in regulated environments. This is only possible when safety, performance, cyber security, and privacy of data are kept at the same level as in on-device only safety-critical CPS. To this end, this paper presents thirteen selected safety and performance concepts for distributed device-edge-cloud CPS solutions. This early result of the TRANSACT project aims to ensure needed end-to-end performance and safety levels from an end-user perspective, to extend edge and cloud benefits of more rapid innovation and inclusion of value-added services, also to safety-critical CPS.

Paper about Model-driven System Performance Engineering Accepted at ESWEEK Industry Session

The System Performance Expertise Team at ESI (TNO) has worked for a long time to consolidate our many years of experience across projects and companies. This effort has now culminated in a paper entitled “Model-driven System Performance Engineering for Cyber-physical Systems“, which has been accepted for the industry session at the Embedded Systems Week (ESWEEK) in October.

The paper describes ESI’s current view on the field of System-Performance Engineering (SysPE). SysPE encompasses modeling formalisms, methods, techniques, and industrial practices to design systems for performance, where performance is taken integrally into account during the whole system life cycle. Industrial SysPE state of practice is generally model-based. Due to the rapidly increasing complexity of systems, there is a need to develop and establish model-driven methods and techniques. To structure the field of SysPE, the paper identifies: (1) industrial challenges motivating the importance of SysPE, (2) scientific challenges that need to be addressed to establish model-driven SysPE, (3) important focus areas for SysPE and (4) best practices. A survey was conducted to collect feedback on our views. The responses were used to update and validate the identified challenges, focus areas, and best practices. The final result is presented in this paper. Interesting observations are that industry sees a need for better design-space exploration support, more than for additional performance modeling and analysis techniques. Also tools and integral methods for SysPE need attention. From the identified focus areas, scheduling and supervisory control is seen as lacking established best practices.

The paper will be presented as a part of Industry Session 2 at ESWEEK on October 12. The second talk of that session presents why and how ITEC, Nexperia, a world-leading manufacturer of semiconductor equipment, is moving towards model-driven system-level development. The session ends with a moderated Q&A. Since ESWEEK is an online event this year, you can register for 20 USD if you want to attend the conference and the session.

Update: The video of the Industry session is now available: