Keynote on Managing Variability and Evolution in High-tech Equipment at FOSD Meeting 2024

I had the distinct honor of opening this year’s Meeting on Feature-Oriented Software Development (FOSD Meeting) with a keynote titled “Managing Variability and Evolution in High-tech Equipment”. FOSD Meeting is a yearly informal meeting to bring together the community of researchers working on feature-oriented software development. This year, the event was hosted by TU/e between April 9 – 12.

The keynote covered complexity trends in the high-tech equipment domain, ESI and its role in the high-tech innovation eco-system, and two examples of how variability and evolution were tackled using model-based methodologies at the level of the software architecture in our projects with Thales. The keynote was appreciated by the organizers of the event and the group of 35 participants, mostly from (German) universities but also from ESI’s international applied research partner DLR.

Reflecting on my experience, I was pleasantly surprised at the broad expertise in this community, which covered modelling, software engineering, and performance and I wished I could have stayed around to enjoy the rest of the event. I am happy to see that the keynote triggered some concrete follow ups that can help us link members of this academic community to research in the high-tech equipment ecosystem.

MasCot Program: Bridging Academia and Industry for High-Tech Innovation in Bits & Chips Feature

An article about strategic academic programming at TNO-ESI has appeared in Bits & Chips. The MasCot program, a collaboration co-funded by ESI and the Dutch research council NWO, is designed to tackle the increasing complexity of high-tech equipment.  The program addresses the pressing need for advanced engineering methodologies through four projects covering essential topics, such as design space exploration during early system design, scheduling, verification, and restructuring of evolving software. In the article, I explain how the 3-million-euro program facilitates the transition of academic research into practical industrial applications, creating an innovation funnel that spans from academic research through applied research to industrial embedding. The program’s strategic approach not only mitigates the risks associated with high-reward, complex projects but also fosters a symbiotic relationship between academia, industry, and TNO, allowing for a continuous exchange of knowledge, challenges, and innovations.

Master Thesis Shines Light on Hardware Dimensioning for Cyber-Physical Systems

On Wednesday, Marijn Vollaard defended his master thesis “Hardware Dimensioning for Microservice-based Cyber-Physical Systems: A Profiling and Performance Prediction Method” at the University of Amsterdam. This research has been supervised by Ben Pronk and myself as a part of a project with TNO-ESI.

The thesis addresses the problem of determining the number of homogeneous compute nodes needed for a particular variant of a cyber-physical system to meet its timing requirements. This is important in early discussions with customers and bidding processes, since it affects the size and cost of the resulting system. To this end, the thesis proposes a structured hardware dimensioning methodology comprising a profiling method and a performance prediction method. The four novel contributions of the thesis are: 1) A component-based profiling method, 2) a performance prediction method, 3) a structured hardware dimensioning methodology, and 4) validation of the approach, using a case study that represents a prototype of a CPS. Experimental evaluations on the case study show that the predicted performance differs from measurements on the application by at most 20%, which is satisfactory for hardware dimensioning decisions for new product variants.

The defense went well and Marijn confidently presented his story and convincingly answered the questions of the audience. The examination committee, impressed by his work, awarded his thesis a well-deserved grade of 8. As we bid farewell to Marijn, embarking on his next career adventure, we also extend our heartfelt congratulations. He certainly has much to be proud of. We wish him all the best on his travels and in his future pursuits.

Mastering Complexity at ICT Open 2024

TNO-ESI is hosting a Mastering Complexity for Cyber-Physical Systems track at ICT Open 2024. The event will take place in Utrecht on April 10-11. My colleague Rosilde Corvino will be the track chair of this event, together with myself. Submit an abstract, poster, or demo now and share with the community how your work addresses the challenge of increasing complexity in cyber-physical systems. Contributions in areas including system architecting, system dependability, system evolvability, systems of systems, and system performance are welcome.

Call for abstracts, posters, and demos:
https://ictopen.nl/track-mastering-complexity-for-cyber-physical-systems-cpshttps://lnkd.in/enBaRjNZ

Submission link:
https://www.ictopen2024.nl/submit-an-abstract/https://lnkd.in/etghmm8F

Master’s Student Marijn Vollaard Shines with Study on Hardware Dimensioning for Microservice Applications in Cyber-Physical Systems

Our master’s student, Marijn Vollaard, has achieved a significant milestone by completing and presenting his literature study titled “Hardware Dimensioning for Microservice Applications in Cyber-Physical Systems: Current Directions and Challenges” The study addresses the challenge of dimensioning the number of compute nodes required to meet the performance demands of microservice-based applications in cyber-physical systems. It thoroughly reviews an extensive body of literature on application and system profiling, performance prediction, and design-space exploration to establish the current state of knowledge in this field. The survey culminates in a discussion about how the surveyed literature applies to microservice applications, the cyber-physical systems context, and the problem of hardware dimensioning. Overall, this is a nice piece of work with a lot of references presented in a systematic way. Congratulations to Marijn for his great effort!”

Keynote Address Explores Performance Engineering in Cloud-Connected Cyber-Physical Systems

I had the honor of being invited as keynote speaker at RT-Cloud 2023. The keynote discussed the increasing complexity of cyber-physical systems (CPS) in the Dutch high-tech systems industry and a gradual transition towards microservice architectures and cloud-connected systems. This transition challenges our experience with performance engineering in the CPS domain, as we adapt our methods to embrace new tools and technologies. To make the presentation concrete, I discussed two projects that I am currently working on, a project on performance verification of microservice architectures together with Thales, and a project about performance engineering and service continuity in the compute continuum, together with Philips and TU/e and other TRANSACT partners. I would like to thank Johan Eker and Luca Abeni for the invitation and all participants for their attention and questions.

TNO-ESI Cloud Continuum Workshop Connects Researchers and Promotes Collaboration in the Netherlands

The TNO-ESI Cloud Continuum workshop, an informal hybrid event that attracted just over twenty participants, took place at ESI on February 21. The goals of this workshop were to: 1) connect applied and academic researchers in the area of cloud continuum in the Netherlands, 2) disseminate research results from ongoing research projects, and 3) identify possibilities for collaboration. Benny Akesson, the organizer of the event, opened the workshop by presenting some drivers for cloud adoption/integration in the high-tech industry, as well as the work done by ESI in the ArchViews and TRANSACT projects related to performance observability. This was followed by four invited speakers from Eindhoven University of Technology and Vrije Universiteit Amsterdam. The topics of the presentations ranged from reference architectures for the cloud continuum, root-cause analysis in the continuum, modelling and calibration of cyber-physical systems deployed in the continuum, to performance variability of cloud/edge systems. All in all, it was a nice and successful event that showcased parts of the body of work currently going on in this exciting area. Thank you Matthijs Jansen, Jeroen Voeten, Mahtab Modaber, and Panagiotis Giannakopoulos for your presentations.

Mastering Complexity – Academia, Industry and TNO working intimately together

The 3rd Annual Program Day for the Mastering Complexity (MasCot) Partnership program took place on Wednesday October 19. This time, the event was hosted by the University of Amsterdam and was held in the Startup Village at Science Park. Approximately 40 participants from academia, industry, NWO, and TNO attended the event. After a brief introduction, project updates were given from the four academic projects in the program:

  1. Scheduling Adaptive Modular Flexible Manufacturing Systems (SAM-FMS)
  2. Programming and Validating Software Restructurings
  3. TiCToC – Testing in Times of Continuous Change
  4. Design Space Exploration 2.0: Towards Optimal Design of Complex, Distributed Cyber Physical Systems

This was followed by Q&A and a short interaction where participants tried to identify the general complexity management techniques used in the projects. In the afternoon, there were breakout sessions focusing on the way-of-working in MasCot projects, how to best involve and engage all stakeholders in the project: industry and academic partners, users, and ESI liaisons. This allowed the different projects to listen to how the others organized their work, e.g. in terms of regular meetings and working on industry location, during the first years and reflect on the best way-of-working to reach their goals for the next stage.

The event was followed by a social program with informal networking set to the tune of a boat ride with drinks on the beautiful canals of a sunny autumn-colored Amsterdam and a dinner at the restaurant In de Waag.

Specification, Verification, and Adaptation of Software Interfaces using Eclipse ComMASuite

Software interfaces are key to realizing the benefits of component-based software architectures, yet specifying interfaces is difficult and may result in problems in the protocol specification itself, or in its interactions with clients. This problem is addressed through a six-step methodology for specification, verification, and adaptation of software interfaces. The methodology builds on the open-source tool Eclipse ComMASuite, developed by TNO-ESI partners in an open innovation eco-system. The specification and verification steps have been contributed back to the community and are supported by a two-day course named “Modelling and Analysis of Component-based Systems”, available from TNO-ESI in both an academic and industry version.

Please read my blog post that describes the methodology and demonstrates it step-by-step from a user perspective through a simple case study in a video.

Position paper accepted at DSD 2022

I am pleased to announce that our position paper “Design Space Exploration for Distributed Cyber-Physical Systems: State-of-the-art, Challenges, and Directions” has been accepted for publication at the Euromicro Conference on Digital System Design (DSD). This is the first accepted paper from the DSE2.0 project, a collaboration between University of Amsterdam, Leiden University, and ASML. The project is a part of the Mastering Complexity (MasCot) partnership program funded by ESI.

The paper addresses the challenge of designing industrial cyber-physical systems (CPS), which are often complex, heterogeneous, and distributed computing systems that typically
integrate and interconnect a large number of hardware and software components. Producers of these distributed Cyber-Physical Systems (dCPS) require support for making (early) design decisions to avoid expensive and time consuming oversights. This calls for efficient and scalable system-level Design Space Exploration (DSE) methods for dCPS. In this position paper, we review the current state of the art in DSE, and argue that efficient and scalable DSE technology for dCPS is more or less non-existing and constitutes a largely unchartered research area. Moreover, we identify several research challenges that need to be addressed and discuss possible directions for targeting such DSE technology for dCPS.