Master’s Thesis Explores User Behavior’s Impact on Digital Service Energy Consumption

Just before the end of summer, Nsidibe Onoyom Bassey, master student at the Vrije Universiteit Amsterdam, has successfully defended her thesis “Impact of Users’ Behavior on Digital Service Energy Consumption“. Congratulations on the defense and completing your studies Nsidibe!

This work was supervised by Ana Lucia Varbanescu and myself in the context of our research project Energy Labels for Digital Services, which studies the energy consumption of applications distributed over the compute continuum. In particular, the research addresses the growing concerns over energy consumption in the ICT sector, which poses challenges to achieving net-zero emissions. While ICT solutions are often seen as efficient and low-cost, their energy impact is significant, particularly due to the high demand for digital services, such as online shopping. Energy consumption in the digital domain is largely driven by hardware, software, and infrastructure, but the role of user behavior in influencing this consumption is often overlooked. The thesis focuses on understanding how user behavior affects energy consumption in digital services, using a commonly used open-source online shop implemented as microservices as a case study. The energy consumption on both the client and server side is studied and experiments are conducted with different client browsers, user interactions, and number of users. Based on the experiments, an analytical model is proposed to estimate the energy impact of user behavior on the server side and recommendations are made to both users and developers for how to limit energy consumption.

Paper on Multi-Application Energy Analysis in Edge Computing Accepted at FMEC 2024

Good news everyone! Our paper “Analysing Per-Application Energy Consumption in a Multi-Application Computing Continuum” was accepted at the 9th International Conference on Fog and Mobile Edge Computing (FMEC 2024). This paper was first-authored by Saeedeh Baneshi, a PhD student at the University of Amsterdam, and complements her earlier work “Estimating the Energy Consumption of Applications in the Computing Continuum with iFogSim“. Congratulations on another accepted paper Saeedeh!

The paper addresses the challenge of analyzing the energy consumption of applications distributed over edge devices and data centers in the compute continuum. The goal is to enable stakeholders, such as cloud providers, developers, users, and researchers, to improve energy efficiency, optimize resource usage, and reduce the environmental impact of such applications. To this end, the work proposes a fine-grained simulation approach for analyzing application energy behavior in edge/cloud environments, based on the iFogSim framework. The three main contributions of the work are: 1) An extension is proposed to iFogSim’s energy model to also consider the energy consumption of communication, 2) iFogSim’s reporting is improved to collect finer-grained data, an essential improvement for analysis of multi-application scenarios, and 3) The effectiveness of the approach is demonstrated by evaluating different multi-application scenarios and configurations for a distributed video surveillance application.

Faezeh Saadatmand Wins Best Paper Award at ICPS

Good news everyone! Our paper “Automated Derivation of Application Workload Models for Design Space Exploration of Industrial Distributed Cyber-Physical Systems” won the Best Paper Award at the 7th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS). This is an impressive feat, especially considering that it is the first paper first-authored by Faezeh Saadatmand, PhD student at Leiden University. Congratulations Faezeh!

The paper tackles an urgent issue: the growing complexity of industrial cyber-physical systems, which is driving up development and maintenance costs. As these systems incorporate more functions, the number of hardware and software components increases rapidly, making it harder to analyze and optimize their performance. Model-based methodologies have been proposed as a means to manage complexity and increase productivity of engineers by using models as a base for specification, communication, analysis, and synthesis of artifacts like documentation, simulation models, and code. But who is going to make models of systems with tens of compute nodes and hundreds of software processes, especially when increased customization results in a unique configuration for each manufactured system? This research addresses this need by introducing an automatic method for deriving an application workload model. This model, based on trace analysis, captures computation and communication activities within an application in a timing-agnostic manner. The method was validated through a case study on an ASML Twinscan lithography machine, showing high accuracy in representing real application workloads.

This paper is a result from the Design Space Exploration 2.0 (DSE2.0) project, one of four academic projects co-funded by TNO-ESI and NWO as a part of the Mastering Complexity (MasCot) program.

 

 

ESI Symposium 2024: A Showcase of Cutting-Edge Research in High-tech Equipment

I had a blast at the ESI Symposium in Veldhoven! It may have been the best ESI Symposium I have visited so far! It is great to see the innovation chain for Dutch high-tech equipment come together and share challenges, exciting new research results, as well as success stories from our implementation partners.

The Symposium also showcased the progress of our academic programs. The Mastering Complexity (MasCot) program, now a veteran at the ESI Symposium, contributes new engineering methodologies to help us manage increasing system complexity and develop next-gen high-tech equipment efficiently and cost-effectively through all development phases, from early architecting to implementation, testing, and evolution. As the program enters its fourth year, the current focus is on rounding off much of the research and transfer developed knowledge and proof-of-concepts to ESI and the industry partners.

The Symposium also introduced our recently started ZORRO project, which is set to change the way we handle system malfunctions in cyber-physical systems. With intelligent diagnostics, ZORRO is on a mission to significantly reduce downtime costs and enhance system reliability. Interested to learn more? Reach out or stay tuned to hear more as the research develops!

Master Thesis Shines Light on Hardware Dimensioning for Cyber-Physical Systems

On Wednesday, Marijn Vollaard defended his master thesis “Hardware Dimensioning for Microservice-based Cyber-Physical Systems: A Profiling and Performance Prediction Method” at the University of Amsterdam. This research has been supervised by Ben Pronk and myself as a part of a project with TNO-ESI.

The thesis addresses the problem of determining the number of homogeneous compute nodes needed for a particular variant of a cyber-physical system to meet its timing requirements. This is important in early discussions with customers and bidding processes, since it affects the size and cost of the resulting system. To this end, the thesis proposes a structured hardware dimensioning methodology comprising a profiling method and a performance prediction method. The four novel contributions of the thesis are: 1) A component-based profiling method, 2) a performance prediction method, 3) a structured hardware dimensioning methodology, and 4) validation of the approach, using a case study that represents a prototype of a CPS. Experimental evaluations on the case study show that the predicted performance differs from measurements on the application by at most 20%, which is satisfactory for hardware dimensioning decisions for new product variants.

The defense went well and Marijn confidently presented his story and convincingly answered the questions of the audience. The examination committee, impressed by his work, awarded his thesis a well-deserved grade of 8. As we bid farewell to Marijn, embarking on his next career adventure, we also extend our heartfelt congratulations. He certainly has much to be proud of. We wish him all the best on his travels and in his future pursuits.

Advancing Sustainability: Paper Accepted on Estimating Energy Consumption of Applications in the Computing Continuum

I am happy to please that the paper “Estimating the Energy Consumption of Applications in the Computing Continuum with iFogSim” was accepted at the International Workshop on Converged Computing (WOCC). The paper is first-authored by Saaedeh Baneshi and is the first publication to come out of the project Energy Labels for Digital Services. Congratulations Saaedeh!

The paper explains how digital services – applications that often span the entire computing continuum – have become an essential part of our daily lives, but they can have a significant energy cost, raising sustainability concerns. Measuring the energy consumption of such applications is challenging due to the distributed nature of the system and the application. As such, simulation techniques are promising solutions to estimate energy consumption, and several simulators are available for modeling the cloud and fog computing environment. The paper investigates iFogSim’s effectiveness in analyzing the end-to-end energy consumption of applications in the computing continuum through two case studies. We design different scenarios for each case study to map application modules to devices along the continuum, including the Edge-Cloud collaboration architecture, and compare them with the two placement policies native to iFogSim: Cloud-only and Edge-ward policies. We observe iFogSim’s limitations in reporting energy consumption, and improve its ability to report energy consumption from an application’s perspective; this enables additional insight into an application’s energy consumption, thus enhancing the usability of iFogSim in evaluating the end-to-end energy consumption of digital services.

Inaugural Lecture Explores Managing Complexity of High-Tech Systems

Today, I finally gave my inaugural lecture “Managing Complexity in High-tech Systems” to celebrate my appointment as Endowed Professor at the University of Amsterdam, which happened back in 2019.

The academic ceremony started at 16:00 with a small reception for fellow professors and members of the curatorium. Together, this group walked in a procession into the beautiful auditorium of the University of Amsterdam, where an audience of colleagues, family, and friends, where waiting in anticipation. The lecture discussed the challenge of increasing complexity in the high-tech equipment industry and how new (model-based) development methodologies leveraging abstraction, boundedness, and composition, are required to address it. I argued that the required innovation should come from collaboration in an innovation chain, where universities, applied research organizations, and industry work together in strategic partnerships. The presentation was concluded with a number of concrete examples of what this collaboration could look like, based on examples from my education and research at TNO and the University of Amsterdam. The inaugural lecture was followed by a reception full of networking and congratulations. I would like to thank everybody that showed up for the event, physically and online. Together, we created a memory that I will treasure for a lifetime.

If you did not manage to attend the lecture, or see it online, there is a recording available. Pop some popcorn, take a seat, and click the link below:

https://webcolleges.uva.nl/Mediasite/Play/99497b81432a49acb57f0ae7a32050d11d

Optimizing Efficiency and Performance: PhD Thesis Defense on Energy- and Time-aware Scheduling for High-Performance Embedded Systems

Yesterday, I participated in the PhD defense committee of Julius Röder, a PhD student in the Parallel Computing Systems group at the University of Amsterdam. The thesis “Energy- and Time-aware Scheduling for Heterogeneous High-Performance Embedded Systems” addresses the relevant problem of optimizing non-functional behavior, such as timing and energy consumption, of heterogeneous high-performance embedded systems. The goal of this optimization Is to reduce energy consumption, thereby also reducing carbon footprint and extending battery-life, as well as ensuring that real-time requirements of applications are satisfied, even at high resource utilizations. To this end, the thesis contributes a discussion on setups used for energy measurements, as well as experiments and a statistical analysis that demonstrate the Importance of sampling frequency on the accuracy of such measurements. The bulk of the thesis proposes heuristic algorithms, both conventional and based on reinforcement learning, for mapping and scheduling applications modelled as directed acyclic graphs (DAG) on heterogeneous platforms. The applications are assumed to be available In different versions, with different non-functional behavior, for the different types of processing elements In the heterogeneous architecture, which enables trade-offs between timing and energy. A key strength of the thesis is that theory is combined with a practical component; the scheduling algorithms are implemented and evaluated on a heterogeneous multi-core systems, where timing and energy behavior are carefully measured and analyzed.

In presence of family, friends, and colleagues, Julius confidently defended his PhD thesis and earned the right to call himself a doctor. Congratulations Julius with this great achievement!

Mastering Complexity – Academia, Industry and TNO working intimately together

The 3rd Annual Program Day for the Mastering Complexity (MasCot) Partnership program took place on Wednesday October 19. This time, the event was hosted by the University of Amsterdam and was held in the Startup Village at Science Park. Approximately 40 participants from academia, industry, NWO, and TNO attended the event. After a brief introduction, project updates were given from the four academic projects in the program:

  1. Scheduling Adaptive Modular Flexible Manufacturing Systems (SAM-FMS)
  2. Programming and Validating Software Restructurings
  3. TiCToC – Testing in Times of Continuous Change
  4. Design Space Exploration 2.0: Towards Optimal Design of Complex, Distributed Cyber Physical Systems

This was followed by Q&A and a short interaction where participants tried to identify the general complexity management techniques used in the projects. In the afternoon, there were breakout sessions focusing on the way-of-working in MasCot projects, how to best involve and engage all stakeholders in the project: industry and academic partners, users, and ESI liaisons. This allowed the different projects to listen to how the others organized their work, e.g. in terms of regular meetings and working on industry location, during the first years and reflect on the best way-of-working to reach their goals for the next stage.

The event was followed by a social program with informal networking set to the tune of a boat ride with drinks on the beautiful canals of a sunny autumn-colored Amsterdam and a dinner at the restaurant In de Waag.

Position paper accepted at DSD 2022

I am pleased to announce that our position paper “Design Space Exploration for Distributed Cyber-Physical Systems: State-of-the-art, Challenges, and Directions” has been accepted for publication at the Euromicro Conference on Digital System Design (DSD). This is the first accepted paper from the DSE2.0 project, a collaboration between University of Amsterdam, Leiden University, and ASML. The project is a part of the Mastering Complexity (MasCot) partnership program funded by ESI.

The paper addresses the challenge of designing industrial cyber-physical systems (CPS), which are often complex, heterogeneous, and distributed computing systems that typically
integrate and interconnect a large number of hardware and software components. Producers of these distributed Cyber-Physical Systems (dCPS) require support for making (early) design decisions to avoid expensive and time consuming oversights. This calls for efficient and scalable system-level Design Space Exploration (DSE) methods for dCPS. In this position paper, we review the current state of the art in DSE, and argue that efficient and scalable DSE technology for dCPS is more or less non-existing and constitutes a largely unchartered research area. Moreover, we identify several research challenges that need to be addressed and discuss possible directions for targeting such DSE technology for dCPS.