Seven Brave Software Architects/Engineers from Thales Completes MOANA-CBS Course using Eclipse ComMASuite

ESI (TNO) has given another instance of the course “Modelling and Analysis of Component-based Systems” (MOANA-CBS), developed as part of the applied research project DYNAMICS, at Thales. A batch of 7 brave software engineers participated to learn more about how to identify and resolve a range of interface model quality problems, such as deadlocks, livelocks, and race conditions. This instance of the course was adapted to be based completely on the latest version of Eclipse ComMASuite, the open source version of ComMA, making the course accessible to a large general audience. Previously, the course has been given with an internal version of ComMA or by using Petri nets as the interface modelling language.

 In total, over 110 participants, mostly with backgrounds in system and software engineering, have followed different versions of this course. This time, two former Thales participants assisted in giving the course, both by presenting contents and supervising exercises, to help Thales transfer the knowledge developed in the DYNAMICS project into the organization. We look forward to further improve the material and keep sharing the knowledge we developed with Thales and other interested parties.

Article about Survey-based Study into Industry Practice in Real-time Systems in Real-time Systems Journal

It has been almost a year since we published the first survey-based study in the area of real-time systems at the Real-time Systems Symposium (RTSS) back in December 2020. The paper was entitled “An Empirical Survey-based Study into Industry Practice in Real-time Systems” and had the ambitious goal of addressing the gap between academic research and industry practice through an empirical survey-based study into industry practice. The survey had five objectives: 1) Establish whether timing predictability is of concern to the real-time embedded systems industry, 2) Identify relevant industrial problem contexts, including hardware platforms, middleware, and software, 3) Determine which methods and tools are used to achieve timing predictability, 4) Establish which techniques and tools are used to satisfy real-time requirements, and 5) Determine trends for future real-time systems. The survey was completed by 120 industry practitioners in the field of real-time embedded systems, which allowed interesting observations and insights to be made about the characteristics of the systems being developed today and important trends for the future.

Now, almost one year later, I am happy to announce that an extended version of our RTSS paper has been accepted for publication in the Real-time Systems journal. The title of the article is “A Comprehensive Survey of Industry Practice in Real-Time Systems“. The main extensions in the article include: 1) a discussion of potential threats to validity of the survey and its results, as well as the steps taken to mitigate them, 2) a statistical analysis and discussion of the results of the survey, in the context of its five objectives, 3) a discussion of the results of a quiz aimed at determining if the aggregate findings of the survey are common knowledge in the real-time systems community. In addition, more aggregated data from the survey has been released, allowing interested readers to further delve into the similarities and differences between the avionics, automotive, and consumer electronic domains.

We hope that you enjoy the article!

Paper about Model-driven System Performance Engineering Accepted at ESWEEK Industry Session

The System Performance Expertise Team at ESI (TNO) has worked for a long time to consolidate our many years of experience across projects and companies. This effort has now culminated in a paper entitled “Model-driven System Performance Engineering for Cyber-physical Systems“, which has been accepted for the industry session at the Embedded Systems Week (ESWEEK) in October.

The paper describes ESI’s current view on the field of System-Performance Engineering (SysPE). SysPE encompasses modeling formalisms, methods, techniques, and industrial practices to design systems for performance, where performance is taken integrally into account during the whole system life cycle. Industrial SysPE state of practice is generally model-based. Due to the rapidly increasing complexity of systems, there is a need to develop and establish model-driven methods and techniques. To structure the field of SysPE, the paper identifies: (1) industrial challenges motivating the importance of SysPE, (2) scientific challenges that need to be addressed to establish model-driven SysPE, (3) important focus areas for SysPE and (4) best practices. A survey was conducted to collect feedback on our views. The responses were used to update and validate the identified challenges, focus areas, and best practices. The final result is presented in this paper. Interesting observations are that industry sees a need for better design-space exploration support, more than for additional performance modeling and analysis techniques. Also tools and integral methods for SysPE need attention. From the identified focus areas, scheduling and supervisory control is seen as lacking established best practices.

The paper will be presented as a part of Industry Session 2 at ESWEEK on October 12. The second talk of that session presents why and how ITEC, Nexperia, a world-leading manufacturer of semiconductor equipment, is moving towards model-driven system-level development. The session ends with a moderated Q&A. Since ESWEEK is an online event this year, you can register for 20 USD if you want to attend the conference and the session.

Update: The video of the Industry session is now available:

Project Proposal about Energy Labels for Digital Services Granted

It is my pleasure to announce our project proposal entitled “Zero-Waste Computing: Energy Labels for Digital Services” has been granted for the Science and Design PhD program at the University of Amsterdam. Ana Lucia Varbanescu is the main applicant for this project, with Anuj Pathania and myself as co-applicants. The project proposal was supported by Surf, ESI (TNO), Barcelona Supercomputing Center, and ASTRON.

The project addresses the issue that digital services are getting increasingly prevalent in society and are vital to the Dutch economy, already reaching 60% of GDP. However, they come with a significant, rapidly-increasing energy cost, raising sustainability concerns, since a mid-size datacenter alone consumes as much energy as a small town. However, datacenters are only the final link in a digital chain. Users interacting with devices — mobile phones, tablets, or laptops — trigger entire digital chains, combining multiple communicating computing layers and data transfers: from the device itself, through the edge, to the datacenter. Each layer has its own computing infrastructure (see figure). At each layer, decisions are made about how, where and when applications are running and/or data are transferred. These decisions have a significant impact on the user-perceived quality-of-service (QoS), but also on the energy consumption – per layer, and for the entire digital chain. The energy footprint of different devices along the chain might be known, but the actual energy consumed by the application is unknown, because it depends on infrastructure choices, and on user QoS requirements, and on mapping decisions made on the edge and in the datacenter. Thus, the energy efficiency, i.e., the amount of energy consumed to perform the actual task at hand, is largely unknown, for most digital chains.

We argue that the first step to reduce waste in computing is to quantify the energy efficiency of end-to-end digital chains. Our project focuses on designing an integrated framework (i.e., the methods, metrics, and tools) for this quantification effort. Specifically, we aim to define a reference architecture of digital chains, use it to define an analytical digital-chain energy-efficiency model that exposes the factors that impact energy efficiency along the chain, and support it with a high-level functional simulator to assess different operational scenarios and parameters that affect the energy efficiency of digital chains.

This is a small project funding only a single PhD student. More momentum is required to further advance this area and make a step from only monitoring the energy consumption of digital chains to also include actuation, e.g. energy minimization through workload redistribution, subject to performance constraints. We are currently looking for interested parties to collaborate with us on this topic in future project proposals.

Paper Accepted at PNSE 2021

It has been almost a year since Mohammed (Madiou) Diallo submitted his bachelor thesis “Towards the Scalability of Detecting and Correcting Incompatible Service Interfaces“, which he carried out in the context of the DYNAMICS project, an applied research project between ESI (TNO) and Thales. After the thesis was finished, we discussed publishing the work as a paper and one year later, a slightly restructured and simplified version of the story has been accepted at the International Workshop on Petri Nets and Software Engineering (PNSE), a workshop co-located with the Petri Net conference.

The accepted paper is entitled “Synthetic Portnet Generation with Controllable Complexity for Testing and Benchmarking” and presents a heuristic-driven method for synthetic generation of random portnets, a kind of Petri Nets suitable for modelling software interfaces in component-based systems. The method considers three user-specified complexity parameters: the expected number input and output places, and the prevalence of non-determinism in the skeleton of the generated net. An implementation of this method is available as an open-source Python tool. Experiments demonstrate the relations between the three complexity parameters and investigate the boundaries of the proposed method. This work was helpful for the DYNAMICS project, as it allowed us to synthetically generate a large number of interfaces of varying complexity that we could use to evaluate the scalability of existing academic tools for adapter generation.

 

 

ESI Featured in Nederland Maakt Het

ESI (TNO) was featured in the latest episode (Season 4 Episode 1) of Nederland Maakt Het, a program on RTL Z about Dutch organizations that develop of apply innovative technologies. In the segment, Wouter Leibbrandt, the Research and Operations director at ESI, explains that the Netherlands has a powerful high-tech industry, which is important to its competitiveness and earning power. To stay at the top and continue to develop excellent products in light of increasing system complexity, it is important to invest in research and development of new design methodologies. Big high-tech companies do this in an open innovation environment to address the challenges they face together. ESI is the applied research organization and knowledge partner that brings the industry and academic parties together into an eco-system to facilitate this.

In my role as part-time professor at UvA, I explain my view on open innovation and how universities contribute and get value from the eco-system. In the Embedded Software and Systems course at the University of Amsterdam, which is an academic partner of ESI since 2021, I discuss the increasing system complexity with my students and teach model-based engineering methodologies to help them address this challenge. I also supervise students that want to contribute to solving the complexity problem by doing their thesis project in with ESI or in industry.  Lastly, Hein Otto Folkerts, the (former) head of Research at ASML, provides the industry view and explains the value of open innovation to ASML, one of the big high-tech companies in the Eindhoven region.

For those of you that missed the episode, it is available for online viewing on RTL XL. The segment about ESI starts at 14m30s and last for about 4 minutes. ESI also has a version of this segment in its own house style that is used for promotional purposes. This version is available here:

Thales and University of Amsterdam Strengthen the ESI Ecosystem

ESI has just made a press release to announce that both Thales and the University of Amsterdam (UvA) has joined as partners in its open-innovation ecosystem. ESI’s ecosystem, based on open innovation, plays an important role in maintaining the leading competitive position of the Dutch high-tech industry. Together with universities and partner companies, ESI develops methodologies and tooling that are in line with the vision and needs of the high-tech industry, making use of the latest insights from universities. In an industry-as-a-lab setting, system engineering methodologies are developed, tested and validated on site at and with partners.

With the addition of UvA and Thales, ESI’s ecosystem now has more industrial and academic partners than ever before, which shows great promise in difficult times. Personally, I am very happy to see that the university where I work decided to further invest in its collaboration with ESI and join the partner board. Similarly, Thales is the company I have worked with in applied research projects for the past five years, and it pleases me that they see the benefits of this collaboration.

Read the full press release from ESI here.

Update:
The press release was picked up by a number of different media outlets, e.g.

UvA – UvA Informatics Institute and Thales strengthen ESI open-innovation ecosystem

Bits & Chips – Thales and UvA (re)join ESI

Emerce – Thales en het Informatica Instituut van de Universiteit van Amsterdam versterken ESI (TNO) open-innovatie ecosysteem

Link Magazine -Thales en de Universiteit van Amsterdam versterken het open-innovatie systeem van ESI TNO 

Engineers Online – Thales en UvA versterken Esi open-innovatie ecosysteem voor hightech

Model-based Engineering Dominates Software-Centric Systems Conference

I attended the online edition of Software-Centric Systems Conference (SC2) today. Although I prefer the networking and social aspects of a physical conference, it was nice to enjoy these presentations from the comfort of my couch.

It was interesting to see that most of the conference presentations were related to domain-specific languages (DSLs) in one way or another. There were also presentations about model-based testing and digital twinning. I am not sure if model-based engineering was an intentional theme, or if this is just what is considered interesting in software-centric systems in the Netherlands for the moment. However, this suggests that the applied research into model-based design methodologies done by ESI (TNO) together with its industrial eco-system is highly relevant.

A highlight for myself was the two presentations about the Component Modelling and Analysis (ComMA) DSL. This is not only because it relates to my research on evolvable interfaces, but also because of the main message that the industry can achieve a lot through open innovation in areas that are not their core business, such as specification, verification, and evolution of software interfaces. Great news that ComMA will become open-source in 2021!

DYNAMICS Project in Keynote at Software-Centric Systems Conference

Two months ago, I mentioned that Bits & Chips had published an article about the ComMA (Component Modelling and Analysis) language and how it is being used in Philips and Thales to address challenges related to integration and evolution. The latter part, about semi-automatic detection and correction of interface incompatibilities as interfaces evolve is the topic of the DYNAMICS project, a research project between ESI (TNO) and Thales. This joint story, where two companies from different domains together presented their challenges and how it was addressed by technology developed by ESI was much appreciated by Bits & Chips and was invited as a keynote at the Software-Centric Systems Conference (SC2), which takes place on Thursday November 5. If you are interested in hearing this keynote, please register for the event. All presentations are also available on-demand after the event in case you cannot attend in real time.

Design Methodologies for Cyber-physical Systems

In this short two minute presentation, I introduce myself and my fundamental and academic research into design methodologies for cyber-physical systems. I sketch a high-level view of the problem and outline a direction based on model-based engineering in which my previous work into domain-specific languages and analysis non-functional behavior fits. For a more elaborate description of my research, please have a look at my research page.