Book Chapter Published by Elsevier

I am pleased to announce that our chapter “Reducing Design Time and Promoting Evolvability using Domain-specific Languages in an Industrial Context” has been accepted for publication in the Elsevier book “Model Management and Analytics for Large Scale Systems“.

This work is the result of an industrial ESI project addressing the need for new methodologies to reduce development time, simplify customization, and improve evolvability of complex software systems. The chapter explains how these challenges are addressed by an approach to model-based engineering (MBE) based on domain-specific languages (DSLs). However, applying the approach in industry has resulted in 5 technical research questions, namely how to: RQ1) achieve modularity and reuse in a DSL ecosystem, RQ2) achieve consistency between model and realizations, RQ3) manage an evolving DSL eco-system, RQ4) ensure model quality, RQ5) ensure quality of generated code. The five research questions are explored in the context of the published state-of-the-art, as well as practically investigated through a case study from the defense domain.

Paper Accepted at MOMA3N

A paper entitled “Pain-mitigation Techniques for Model-based Engineering using Domain-specific Languages” has been accepted at the Special Session on Model Management And Analytics (MOMA3N), a workshop co-located with MODELSWARD 2018. This paper is my first publication related to my work at TNO-ESI, which focuses on model-based engineering (MBE), virtual prototyping, and domain-specific languages (DSLs).

This paper is an experience report from an investigation into how to mitigate the pains associated with a transition to a model-based design flow using DSLs. The contributions of the paper are: 1) a list of 14 pains related to MBE as a technology that is representative of our industrial partners designing high-tech systems in different domains, 2) a selected subset of six pains is positioned with respect to the state-of-the-practice, 3) practical experiences and pain-mitigation techniques from applying a model-based design process using DSLs to an industrial case study based on a Threat Ranking component of a Combat Management System, and 4) a list of three open issues that require further research.