Performance Engineering in High-Tech Systems: A Visit to CISTER Research Center

I recently had the opportunity to visit the CISTER Research Center for Real-time and Embedded Computing in Porto. It was a great chance to reconnect with former colleagues from my previous tenure there. During my visit, I was invited give a presentation focusing on the complexity challenges in high-tech equipment and ESI’s vision on model-driven performance engineering in this field. The talk also highlighted the growing use of microservice architectures in cyber-physical systems to address the complexity drivers. I explained that while there are good open source tools for instrumenting applications and gathering telemetry data, such as metrics, logs, and traces, new automated analysis methods are needed to reduce the effort of optimizing, verifying, and diagnosing system performance. In this context, I introduced a framework for telemetry-based performance engineering that can be used to address a number of performance challenges. In particular, I explained how it could be used to check whether the system implementation conforms to a UML specification, both in terms of timing and behavior, and to perform performance prediction.

The presentation, which was attended by a group of approximately 15 staff members and PhD students, was well-received and led to fruitful discussions about the relation between real-time systems research and performance engineering. . The visit concluded wonderfully with a delightful dinner with the institute’s director, Prof. Eduardo Tovar, in Matosinhos.

Automatic Workload Inference Improves Scalability of DSE in Complex Systems

I am happy to announce that the paper “Automated Derivation of Application Workload Models for Design Space Exploration of Industrial Distributed Cyber-Physical Systems” has been accepted for publication at the 7th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS). The paper is first-authored by Faezeh Saadatmand in the context of the DSE2.0 project, a part of the academic research program MasCot, co-funded by TNO-ESI and NWO. Congratulations Faezeh!

The paper addresses challenges with respect to designing their next-generation distributed cyber-physical systems (dCPS). Efficient Design Space Exploration (DSE) techniques are needed to evaluate possible design decisions and their consequences on non-functional aspects of the systems. To enable scalable and efficient DSE of complex dCPS, it is essential to have abstract and coarse-grained models that are both accurate and capable of capturing dynamic application workloads. However, manually creating such models is time-consuming and error-prone, and they need to be continuously updated as the system evolves. This research addresses this need by introducing an automatic method for deriving an application workload model. This model, based on trace analysis, captures computation and communication activities within an application in a timing-agnostic manner. The approach has been validated through a case study on an ASML Twinscan lithography machine, demonstrating high accuracy in capturing real application workloads. Next steps in this research involves combining this model with an automatically inferred hardware platform model to enable DSE exploring different hardware, software, and mapping alternatives.

The Journey from Offline to Online Conformance Checking for Microservice Applications

Ricardo Andrade has successfully defended his master thesis “Real-Time Conformance Checking for Microservice Applications“. This thesis was done in the context of the ArchViews project together with Thales. The academic supervisor was ESI colleague and TU/e professor Johan Lukkien and the daily supervision at ESI was done by myself and Ben Pronk.

The thesis addresses the shift from monolithic architectures to microservice architectures in order to manage the complexities and dependencies that emerge as systems grow and incorporate new features. A significant gap identified in the management of microservice applications is the lack of effective conformance checking techniques that can verify whether the execution of microservices aligns with their specification. To address this, the thesis proposes an innovative solution by developing an online conformance checker specifically designed for microservice applications. The project begins with the creation of an offline conformance checker that evaluates conformance using execution traces and sequence diagrams. The work then progresses to an online conformance checker, significantly improving performance and delivering conformance results within approximately 30 seconds per trace. This rapid response time meets the requirement for swift identification and correction of non-conforming sequences, thereby offering a practical and effective tool for managing microservice applications.

Ricardo presented his work very well using beautifully prepared slides. He confidently answered questions from the audience and the examination committee and left the session with a good grade. Ricardo is now moving on from his studies to start his career at CGI. We wish him the best of luck in his future career.

Jesse Liauw-A-Fong Defends Master’s Thesis on Local Anomaly Detection in Smart Public Transport Vehicles

Yesterday, Jesse Liauw-A-Fong, a student of the Master of Software Engineering program at UvA, defended his thesis Local Anomaly Detection in Smart Public Transport Vehicles. This research was conducted externally at a company called Ximedes. Jessie’s research is addressing the problem of detecting anomalies, such as a loss of cloud connection, in Smart Public Transport Vehicles (SPTV), such as buses, trams, and metros, comprising many complex heterogeneous systems. It emphasizes the importance of local, context-aware anomaly detection due to the dynamic nature of SPTVs and explores the generalization of anomaly detection, particularly addressing performance, normal region, and quality challenges. The research proposes a unified data collection framework comparing agent-based and agent-less methods, advocating for an agent-based approach for its adaptability and integration ease. It also quantitatively evaluates three local anomaly detection algorithms on real data from a specific bus line. We thank Jessie for his contributions to our research and wish him the best of luck in his future career.

MasCot Program: Bridging Academia and Industry for High-Tech Innovation in Bits & Chips Feature

An article about strategic academic programming at TNO-ESI has appeared in Bits & Chips. The MasCot program, a collaboration co-funded by ESI and the Dutch research council NWO, is designed to tackle the increasing complexity of high-tech equipment.  The program addresses the pressing need for advanced engineering methodologies through four projects covering essential topics, such as design space exploration during early system design, scheduling, verification, and restructuring of evolving software. In the article, I explain how the 3-million-euro program facilitates the transition of academic research into practical industrial applications, creating an innovation funnel that spans from academic research through applied research to industrial embedding. The program’s strategic approach not only mitigates the risks associated with high-reward, complex projects but also fosters a symbiotic relationship between academia, industry, and TNO, allowing for a continuous exchange of knowledge, challenges, and innovations.

Master Thesis Shines Light on Hardware Dimensioning for Cyber-Physical Systems

On Wednesday, Marijn Vollaard defended his master thesis “Hardware Dimensioning for Microservice-based Cyber-Physical Systems: A Profiling and Performance Prediction Method” at the University of Amsterdam. This research has been supervised by Ben Pronk and myself as a part of a project with TNO-ESI.

The thesis addresses the problem of determining the number of homogeneous compute nodes needed for a particular variant of a cyber-physical system to meet its timing requirements. This is important in early discussions with customers and bidding processes, since it affects the size and cost of the resulting system. To this end, the thesis proposes a structured hardware dimensioning methodology comprising a profiling method and a performance prediction method. The four novel contributions of the thesis are: 1) A component-based profiling method, 2) a performance prediction method, 3) a structured hardware dimensioning methodology, and 4) validation of the approach, using a case study that represents a prototype of a CPS. Experimental evaluations on the case study show that the predicted performance differs from measurements on the application by at most 20%, which is satisfactory for hardware dimensioning decisions for new product variants.

The defense went well and Marijn confidently presented his story and convincingly answered the questions of the audience. The examination committee, impressed by his work, awarded his thesis a well-deserved grade of 8. As we bid farewell to Marijn, embarking on his next career adventure, we also extend our heartfelt congratulations. He certainly has much to be proud of. We wish him all the best on his travels and in his future pursuits.