Call for Papers: Special Issue on Model-Driven System-Performance Engineering for CPS

I’m honored to serve as Guest Editor for a special issue of IET Cyber-Physical Systems: Theory and Applications focused on Model-Driven System-Performance Engineering for CPS. This issue is a collaboration with Twan Basten (Eindhoven University of Technology), Arvind Easwaran (Nanyang Technological University), and Marilyn Wolf (University of Nebraska-Lincoln).

We invite submissions from both academia and industry across various application domains. If you’re working in this area, consider contributing your research! The submission deadline is November 1, 2024. Feel free to reach out if you have any questions!


Model-Driven System-Performance Engineering for CPS

Submission deadline: Friday, 1 November 2024
Expected Publication Month: June 2025

System performance refers to the amount of useful work done by a system within predefined quality constraints. System performance often brings the competitive advantage for cyber-physical systems in domains like autonomous driving, chip manufacturing and production systems in general, healthcare, the smart grid, precision agriculture, and so on. To meet market demands for product and system quality, system customization, and a low total cost of ownership, systems need to meet ever more ambitious targets relating to system performance. Performance is a cross-cutting system-level concern, with intricate relations to other system-level concerns like quality, cost, energy efficiency, security, reliability, and customizability. Model-driven system-performance engineering (MD-SysPE) for CPS is essential to improve time-to-quality and the cost-performance ratio of complex systems.

This special issue invites any contributions in model-driven system-performance engineering for CPS that are of interest to the academic and industrial CPS community at large. Original research papers, industrial applications and case studies, and surveys on relevant topics are welcome.

Topics for this call for papers include but are not restricted to:

  • Multi-domain modelling, analysis, and optimization of performance aspects
  • Performance views in system architecture
  • Modelling and analysis of trade-offs with other system qualities
  • Modelling and analysis across abstraction levels
  • Design-space exploration methods
  • Synthesis methods targeting performance
  • Scheduling, control in relation to performance
  • Time-predictable (software) execution
  • Data-driven performance analysis and optimization
  • AI methods for performance analysis, optimization, diagnostics
  • Performance monitoring
  • Run-time adaptation and optimization
  • Performance debugging and diagnostics
  • Model learning for performance
  • Performance validation, verification, and testing

Call for Papers and Experts – 30th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS 2024) in Hong Kong

I have the honor of being the Program Chair of the 30th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS 2024), located in Hong Kong May 13-16 next year. Please see the Call for Papers below.

Soon, it will be time to put together the Technical Program Committee (TPC) that will review and select the papers that will appear in the conference program. If you are interested in joining the TPC of this conference, or any other conference (co-)sponsored by the Technical Community of Real-Time Systems (TCRTS), please fill out the TPC self-nomination form as soon as possible. We always welcome self-nominations from our own community, but this year we especially encourage self-nominations from the academic performance engineering community, as well as members of the industry that work with real-time requirements or performance engineering, defined in a broad sense.

If you have any questions, please feel to reach out to me. If want to self-nominate, click this link. A self-nomination is not a firm commitment, it is just a declaration of interest that may result in an invitation.

———————————————————————————————————————

30th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS 2024)

Hong Kong, May 13-16, 2024

———————————————————————————————————————

CALL FOR PAPERS

———————————————————————————————————————

RTAS is a top-tier conference with a focus on time-sensitive systems. RTAS’24 invites papers describing case studies, applications, methodologies, and algorithms that contribute to the state of practice in design, implementation, verification, validation, and evolution of time-sensitive systems. RTAS’24 consists of two tracks:

  • Track 1. Systems and Applications;
  • Track 2. Applied Methodologies and Foundations.

In both tracks, papers must consider some kind of timing requirements. The timing requirements of interest are broadly defined and include not only classical hard real-time constraints, but also soft real-time, probabilistic, quality-of-service (QoS), throughput or latency requirements. The application area can be any type of time-sensitive systems, ranging from resource-constrained embedded systems to cyber-physical systems (CPS), cloud/edge/fog computing systems, cloud data centers, Internet of Things (IoT), mobile computing, robotics,  smart grid, and smart cities, as well as middleware and frameworks, machine learning in or for time-sensitive systems and signal processing algorithms that execute in real time. RTAS welcomes both papers backed by formal proofs, as well as papers that focus exclusively on empirical validation of timing requirements, e.g., using traces or performance models inferred from operational data. Research results from fundamental research, (case-driven) applied research, and (pragmatic) industry practice are all in scope.

RTAS’24 follows a double-anonymous peer reviewing process: author identities and affiliations will not be revealed to reviewers. Authors will have the opportunity to provide a response to reviews before acceptance decisions are made, solely to provide clarifications and correct misconceptions. The response will not allow authors to introduce new material beyond the original submission, or promise such material for the camera-ready version. There will be an optional evaluation process for accepted papers that assesses the reproducibility of the work.

Track 1: Systems and Applications

This track focuses on research of an empirical nature pertaining to (system- or component-) level analysis, optimization, and verification, as well as applications, runtime software, and hardware architectures for time-sensitive systems.

Topics relevant to this track include, but are not limited to:

  • time-sensitive applications
  • real-time and embedded operating systems,
  • hypervisors and runtime frameworks,
  • hardware architectures, memory hierarchies, FPGAs, GPUs and accelerators,
  • time-sensitive networks, CPS/IoT infrastructure,
  • microservice technologies, cloud and edge computing, real-time artificial intelligence and machine learning,
  • application profiling, WCET analysis, compilers, tools, benchmarks and case studies.

Papers discussing design and implementation experiences on real industrial systems are especially encouraged. Papers submitted to this track should focus on specific systems and implementations. Authors must include a section with experimental results performed on a real implementation, or demonstrate applicability to an industrial case study or working system. The experiment or case study discussions must highlight the key lessons learned. Simulation-based results are acceptable for architectural simulation, or other cases where authors clearly motivate why it is not feasible to develop and evaluate a real system.

Empirical survey-based research focused on the real-time systems field is also welcome in this track. This type of research uses surveys, questionnaires, interviews, use cases or other empirical techniques to obtain information about the past / current / future state of play in the research, design, development, verification, validation, and deployment of time-sensitive systems.

Track 2: Applied Methodologies and Foundations

This track focuses on fundamental models, and analysis techniques/methods that are applicable to time-sensitive systems to solve specific problems. The track welcomes knowledge-based models, models built from operational data, as well as a combination, and different types of analysis methods, including analytical, statistical, or probabilistic methods. Topics relevant to this track include, but are not limited to:

  • modelling languages, modelling methods, model learning, model validation and calibration,
  • scheduling and resource allocation,
  • system-level optimization and co-design techniques,
  • design space exploration,
  • verification and validation methodologies.

Papers must describe the main context or use case for the proposed methods giving clear motivating examples based on real systems. The system models and any assumptions used in the derivation of the methods must be applicable to real systems, and reflect actual needs. Papers must include a section on experimental results, preferably including a case study based on information from a real system. The use of synthetic workloads and models is acceptable if appropriately motivated and used to provide a systematic evaluation.

Important Dates

Submission Deadline (firm): October 31, 2023
Author Response Period: January 8-12, 2024
Author Notification: January 19, 2024
Conference Date: May 13-16, 2024