TNO-ESI Cloud Continuum Workshop Connects Researchers and Promotes Collaboration in the Netherlands

The TNO-ESI Cloud Continuum workshop, an informal hybrid event that attracted just over twenty participants, took place at ESI on February 21. The goals of this workshop were to: 1) connect applied and academic researchers in the area of cloud continuum in the Netherlands, 2) disseminate research results from ongoing research projects, and 3) identify possibilities for collaboration. Benny Akesson, the organizer of the event, opened the workshop by presenting some drivers for cloud adoption/integration in the high-tech industry, as well as the work done by ESI in the ArchViews and TRANSACT projects related to performance observability. This was followed by four invited speakers from Eindhoven University of Technology and Vrije Universiteit Amsterdam. The topics of the presentations ranged from reference architectures for the cloud continuum, root-cause analysis in the continuum, modelling and calibration of cyber-physical systems deployed in the continuum, to performance variability of cloud/edge systems. All in all, it was a nice and successful event that showcased parts of the body of work currently going on in this exciting area. Thank you Matthijs Jansen, Jeroen Voeten, Mahtab Modaber, and Panagiotis Giannakopoulos for your presentations.

Ensuring Safety, Performance, and Security in Cloud-Enabled CPS: Accepted Paper Presents Thirteen Concepts at IEEE SysCon 2023

Our paper entitled “Thirteen Concepts to Play it Safe with the Cloud” has been accepted at IEEE International Systems Conference (SysCon), that will take place in Vancouver, Canada on April 17-20, 2023. The paper discusses how edge and cloud technologies has the potential to enhance safety-critical CPS, also in regulated environments. This is only possible when safety, performance, cyber security, and privacy of data are kept at the same level as in on-device only safety-critical CPS. To this end, this paper presents thirteen selected safety and performance concepts for distributed device-edge-cloud CPS solutions. This early result of the TRANSACT project aims to ensure needed end-to-end performance and safety levels from an end-user perspective, to extend edge and cloud benefits of more rapid innovation and inclusion of value-added services, also to safety-critical CPS.

Literature Review on Scalable System-level Simulation

Herman Kelder has joined the DSE2.0 research project as a master student. DSE2.0 is a project that aims to propose a methodology for design-space exploration of complex distributed cyber-physical systems, like lithography machines manufactured by ASML. One of the great challenges is to improve the scalability to handle the complexity of such systems, a challenge that needs to be addressed both in terms of how the system (performance) is modelled and evaluated (simulated) for a particular design point, as well as how design points to evaluate is being chosen. Hermans thesis will focus on how to improve the scalability of system-level simulation to allow more design points to be evaluated faster.

One of Herman’s first assignments was to put together a literature review on this topic. The literature review, entitled “Exploring Scalability in System-Level Simulation Environments for Distributed Cyber-Physical Systems“, investigates state-of-the-art scalability techniques for system-level simulation environments, i.e. Simulation Campaigns, Parallel Discrete Event Simulations (PDES), and Hardware Accelerators. The goal is to address the challenge of scalable Design Space Exploration (DSE) for dCPS, discussing such approaches’ characteristics, applications, advantages, and limitations. The conclusion recommends starting with simulation campaigns as those provide increased throughput, adapt to the number of tasks and resources, and are already implemented by many state-of-the-art simulators. Nevertheless, further research has to be conducted to define, implement, and test a sophisticated general workflow addressing the diverse sub-challenges of scaling system-level simulation environments for the exploration of industrial-size distributed Cyber-Physical Systems.

We look forward to working with Herman and seeing how his research develops along these directions.