Back from MODELS 2019

After six days in Munich I have now left the MODELS 2019 conference. It has been an intense couple of days with three days of workshops and tutorials, and three days of main conference. Both the technical and social aspects of the conference were exceptionally well-organized, so kudos to the men and women who worked hard to make that happen.

The four main highlights at the conference for me were:
1. Presenting our paper “Towards Continuous Evolution through Automatic Detection and Correction of Service Incompatibilities” at the MODCOMP workshop. Discussions with conference participants about Petri Net transformations have given inspiration for how to formally work with more complex service behaviors than we do in our work on service-oriented architectures today.

2. A tutorial on StateCharts that improved my understanding of a model-of-computation I will be teaching at the University of Amsterdam in the near future. Thanks to Simon van Mierlo, Hans Vangheluwe, and Axel Terfloth for organizing this tutorial and for sharing their excellent material.

3. Meeting and discussing with representatives from BMW, Daimler, MAN, Continental, TTTech, and other automotive companies and hear more about automotive trends towards centralization of computation, first through domain controllers and then further towards integration of domains in automotive “supercomputers”. It was also interesting to see that the automotive industry is showing interest in service-oriented architectures as a paradigm for their platforms. In fact, a paper entitled “Model-Based Resource Analysis and Synthesis of Service-Oriented Automotive Software Architectures” from BMW got the Best Paper Award on the Practice and Innovation track for work in this direction. This confirms our belief that our current applied research on service-oriented architectures in the defense domain can be generalized to other domains.

4. Meeting and talking to people from both Flanders Make and CETIC, which are the Flemish and Wallonian equivalents of ESI (TNO). It was interesting to talk to them and learn about how what we do is similar and different, both in terms of technical scope and business models.

I hope to return to the MODELS conference again next year to present more of our work and have another opportunity to discuss with and learn from top academics and industrialists in the area of model-based engineering.

Anna Minaeva Successfully Defends Dissertation

Today, Anna Minaeva successfully defended her PhD dissertation entitled “Scalable Scheduling Algorithms for Embedded Systems with Real-Time Requirements” and earned the right to call herself a doctor. The reviewers were pleased with the dissertation and she confidently answered their questions.

The dissertation considers applications with real-time requirements sharing resources, such as memories, cores, and networks, in distributed systems. Scheduling this type of application subject to resource and precedence constraints, among others, while maximizing system performance is a challenging problem. Existing approachesĀ either propose exact solutions that cannot solve industrial-sized instances or propose heuristic algorithms without validating its efficiency with optimal solutions.

The dissertation addresses this problem through a three-stage approach, corresponding to three problems with gradually increasing complexity and accuracy of the model. The four main contributions of are: 1) Comparison of three formalisms to solve the problems optimally, Integer Linear Programming (ILP), Satisfiability Modulo Theory, and Constraint Programming, along with computation time improvements. To increase the scalability of the ILP approach, an optimal approach that wraps the ILP in a branch-and-price framework is presented. 2) For each problem, a scalable and efficient heuristic algorithm is presented that decomposes the problem to decrease its computation time. 3) The efficiency of the optimal and heuristic strategies are quantitatively and qualitatively compared. 4) The practical applicability of the proposed heuristic algorithms and optimal approaches is demonstrated on case studies of real systems in both the automotive and consumer electronics domains.

I wish Anna the best of luck in her future career and hope I will have the opportunity to work with her again.