RTNS Outstanding Paper Award and Best Student Paper Award

The 27th International Conference on Real-Time Networks and Systems (RTNS) in Toulouse, France is over. Our paper “Response Time Analysis of Multiframe Mixed-Criticality Systems” received not one, but two awards! Before the conference, we were notified that it had received an Outstanding Paper Award, as listed in the conference program. During the conference, we also learned that it received a Best Student Paper Award. I would like to take this opportunity to congratulate Ishfaq Hussain, PhD student at CISTER and first author of the paper. This seems like a good start of a distinguished research career.

Paper Accepted at EMSOFT 2019

Our collaboration with CISTER has been extremely fruitful this year, as yet another paper in our research line on mixed-criticality scheduling has been accepted. This latest paper is entitled “Techniques and Analysis for Mixed-criticality Scheduling with Mode-dependent Server Execution Budgets” and has been accepted at the International Conference on Embedded Software (EMSOFT).

The goal of this work is, like many other in this research line, is to reduce cost of mixed-criticality systems. This time, we achieve this by addressing the limitation that a server only has a single execution budget in all modes, despite that their computational requirements may vary significantly. More specifically, the three main contributions of the paper are: 1) a scheduling arrangement for uni-processor systems employing fixed-priority scheduling within periodic servers, whose budgets are dynamically adjusted at run-time in the event of a mode change, 2) a new schedulability analysis for such systems, and 3) heuristic algorithms for assigning budgets to servers in different modes and ordering the execution of the servers. Experiments with synthetic task sets demonstrate considerable improvements (up to 52.8%)

Paper Accepted at RTNS 2019

The paper “Response Time Analysis of Multiframe Mixed-Criticality Systems” has been accepted at RTNS 2019. This work is the next in our mixed-criticality research line, in collaboration with my former colleagues at CISTER. It continues our work on the multi-frame task model, also considered in our RTCSA paper this year. The multi-frame model describes tasks that have different worst-case execution times for each job, following a known pattern, which can be exploited to reduce the cost of the system. Existing schedulability analyses fail to leverage this characteristic, potentially resulting in pessimism and increased system cost.

In this paper, we present a schedulability analysis for the multi-frame mixed-criticality model. Our work extends both the analysis techniques for Static Mixed-Cricality scheduling (SMC) and Adaptive Mixed-Criticality scheduling (AMC), on one hand, and the schedulability analysis for multi-frame task systems on the other. Our proposed worst-case response time (WCRT) analysis for multi-frame mixed-criticality systems is considerably less pessimistic than applying the SMC, AMC-rtb and AMC-max tests obliviously to the WCET variation patterns. Experimental evaluation with synthetic task sets demonstrates up to 63.8% higher scheduling success ratio compared to the best of the frame-oblivious tests.

Paper Accepted at RTCSA 2019

A paper “Memory Bandwidth Regulation for Multiframe Task Sets” has been accepted at RTCSA 2018. This paper aims to reduce cost of real-time systems where the worst-case execution times of tasks vary from job to job, according to known patterns. This kind of execution behavior can be captured by the multi-frame task model. However, this model is optimistic and unsafe for multi-cores with shared memory controllers, since it ignores memory contention, and existing approaches to stall analysis based on memory regulation are very pessimistic if straight-forwardly applied.

This paper remedies this by adapting existing stall analyses for memory-regulated systems to the multi-frame model. Experimental evaluations with synthetic task sets show up to 85% higher scheduling success ratio for our analysis, compared to the frame-agnostic analysis, enabling higher platform utilization without compromising safety. We also explore implementation aspects, such as how to speed up the analysis and how to trade off accuracy with tractability.

Paper Accepted at WMC 2018

A paper entitled “Decoupling Criticality and Importance in Mixed-Criticality Scheduling” has been accepted at the 6th International Workshop on Mixed Criticality Systems (WMC).The paper addresses the need for more expressive task models for mixed-criticality systems by presenting an extension to the well-known mode-based adaptive mixed-criticality model by Vestal. The proposed model allows a task’s criticality and its importance to be specified independently from each other. A task’s importance is the criterion that determines its presence in different system modes. Meanwhile, the task’s criticality (reflected in its Safety Integrity Level (SIL) and defining the rules for its software development process), prescribes the degree of conservativeness for the task’s estimated WCET during schedulability testing.

We indicate how such a task model can help resolve some of the perceived weaknesses of the Vestal model, in terms of how it is interpreted, and demonstrate how the existing scheduling tests for the classic variant’s of Vestal’s model can be mapped to the new task model essentially without changes.

Paper Accepted at RTCSA 2018

We celebrate the acceptance of our paper “Mixed-criticality Scheduling with Dynamic Memory Bandwidth Regulation” at RTCSA. This paper is the next step in my research collaboration with CISTER on mixed-criticality systems.

The paper aims to safely reduce the cost of mixed-criticality multi-core systems by addressing inefficient usage of memory bandwidth. This is achieved by combining per-core memory access regulation with the well-established Vestal model, which improves on the state-of-the-art in two respects: 1) We allow the memory access budgets of the cores to be dynamically adjusted, when the system undergoes a mode change, reflecting the different needs in each mode, for better schedulability. 2) We devise memory regulation-aware and stall-aware schedulability analysis for such systems, based on AMC-max. By comparison, the state-of-the-art offered no option of dynamic adjustment of core budgets, and only offered regulation-aware schedulability analysis based on AMC-rtb, which is inherently more pessimistic. Finally, 3) we consider different task assignment and bandwidth allocation heuristics, to assess the improvement from the dynamic memory budgets and new analysis. Our results show improvements in schedulability ratio of up to 9.1% over the state-of-the-art.

Article in Real-Time Systems Journal has Appeared

A journal article entitled “Unified overhead-aware schedulability analysis for slot-based task-splitting” has appeared in Real-Time Systems Journal. This article was first-authored by Paulo Baltarejo Sousa during my time at CISTER-ISEP Research Unit in Porto, Portugal and is the result of a collaboration from that time.

The main contribution of the article is a unified scheduling theory for two state-of-the-art slot-based semi-partitioned algorithms, S-EKG and NPS-F. This new theory is based on exact schedulability tests, thus also overcoming many sources of pessimism in existing analyses. Another benefit of the proposed analysis is that it captures overheads, such as interrupts, context switches, and caches, occurring when tasks are deployed on real multi-core platforms. Together, these advantages results in a new efficient and reliable schedulability analysis for slot-based task-splitting algorithms.