A paper entitled “Partitioning and Analysis of the Network-on-Chip on a COTS Many-Core Platform” was recently accepted for publication at RTAS. This paper was a collaboration with former colleagues at the CISTER Research Unit, as well as friends from MDH in Sweden. The paper addresses the issue of interference between applications in many-core platforms interconnected using rate-regulated Networks-on-Chip (NoC), such as the Kalray MPPA. The main contributions of the paper are 1) a partitioning strategy for reducing contention on the NoC, 2) an analysis technique to determine the Worst-Case Traversal Time of packages under the proposed strategy, and 3) a method to determine parameters for the NoCs rate regulators to get minimal WCTT and ensure that buffers never overflow. The benefits of the proposed approach is evaluated both using simulation and by experiments on a Kalray MPPA. Furthermore, an industrial case study from the automotive domain shows the tightness of the proposed analysis.
Benny Akesson
Design Methodologies for Cyber-Physical Systems