Paper Accepted at ECRTS 2017

Our paper “Mixed-criticality Scheduling with Dynamic Redistribution of Shared Cache” has been accepted at ECRTS 2017, marking the end of yet another succesful collaboration with my former colleagues at CISTER. The paper proposes an extension of Vestal’s model for mixed-criticality multi-core systems that 1) accounts for the per-task partitioning of the last-level cache, and 2) supports dynamic reassignment of cache portions initially reserved for lower-criticality tasks to the higher-criticality tasks when switching to high-criticality mode. A schedulability analysis based on partitioned EDF is presented that is aware of the cache resources assigned to each task and leverages the dynamic reconfiguration to improve schedulability. We also propose heuristics for partitioning the cache in low- and high-criticality mode. Experimental result indicate tangible improvements in schedulability compared to a baseline cache-aware arrangement where there is no redistribution of cache resources from low- to high-criticality tasks in the event of a mode change.

Outstanding Paper Award at ECRTS

I am pleased to announce that our paper “Cache-Persistence-Aware Response-Time Analysis for Fixed-Priority Preemptive Systems” got an Outstanding Paper Award at the Euromicro Conference on Real-Time Systems (ECRTS) in Toulouse. We are glad that the work was well-received and hope that the community will enjoy reading the paper.

Two Papers Accepted at ECRTS 2016!

Two papers have been accepted for presentation at the 28th Euromicro Conference on Real-Time Systems (ECRTS 2016) in Toulouse, France. The first paper is entitled “Cache-Persistence-Aware Response-Time Analysis for Fixed-Priority Preemptive Systems” as is a collaboration with Syed Aftab Rashid, Geoffrey Nelissen, and Eduardo Tovar from CISTER and Damien Hardy and Isabelle Puaut from University of Rennes. This paper presents a WCRT analysis for single-core fixed-priority preemptive systems that exploits persistent cache blocks that are known to be in the cache to reduce WCRT.

The title of the second paper is “Contention-Free Execution of Automotive Applications on a Clustered Many-Core Platform” that was written together with Borislav Nikolic and Vincent Nelis from CISTER, Matthias Becker and Thomas Nolte from MRTC, and Dakshina Dasari from Bosch. This work presents a contention-free execution framework for automotive applications on many-core platforms, which combines privatization of memory banks together with defined access phases to shared memory resources. An Integer Linear Programming (ILP) formulation is presented to find the optimal time-triggered schedule for execution as well as for accesses to shared memory. Additionally, a heuristic solution is presented that generates the schedule in a fraction of the time required by the ILP.