Literature Review on Scalable System-level Simulation

Herman Kelder has joined the DSE2.0 research project as a master student. DSE2.0 is a project that aims to propose a methodology for design-space exploration of complex distributed cyber-physical systems, like lithography machines manufactured by ASML. One of the great challenges is to improve the scalability to handle the complexity of such systems, a challenge that needs to be addressed both in terms of how the system (performance) is modelled and evaluated (simulated) for a particular design point, as well as how design points to evaluate is being chosen. Hermans thesis will focus on how to improve the scalability of system-level simulation to allow more design points to be evaluated faster.

One of Herman’s first assignments was to put together a literature review on this topic. The literature review, entitled “Exploring Scalability in System-Level Simulation Environments for Distributed Cyber-Physical Systems“, investigates state-of-the-art scalability techniques for system-level simulation environments, i.e. Simulation Campaigns, Parallel Discrete Event Simulations (PDES), and Hardware Accelerators. The goal is to address the challenge of scalable Design Space Exploration (DSE) for dCPS, discussing such approaches’ characteristics, applications, advantages, and limitations. The conclusion recommends starting with simulation campaigns as those provide increased throughput, adapt to the number of tasks and resources, and are already implemented by many state-of-the-art simulators. Nevertheless, further research has to be conducted to define, implement, and test a sophisticated general workflow addressing the diverse sub-challenges of scaling system-level simulation environments for the exploration of industrial-size distributed Cyber-Physical Systems.

We look forward to working with Herman and seeing how his research develops along these directions.