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Abstract

In recent years, large-scale distributed cyber-physical systems (dCPS) have be-

come the driving force behind world-class manufacturing companies like ASML,

Canon Production Printing, and Philips. However, the task of evaluating the

designs of these systems by building physical prototypes has grown in com-

plexity and cost. Automated scalable Design Space Exploration (DSE) offers

a promising solution to this problem. Using automated processes to evaluate

dCPS design alternatives significantly reduces the time and cost of the design

process. However, DSE of dCPS brings its own challenges.

This thesis aims to enhance the design process of dCPS as part of the DSE2.0

research project, specifically addressing the challenge of modeling the delay of

the network that connects the dCPS subsystems. The goal is to model network

delays at an appropriate level of abstraction such that the model has reasonable

speed and accuracy, and is useful for DSE purposes.

The research methodology encompasses the formalization of the concepts of

Network Topology and Network Traffic, establishing an open-source framework

called GeNSim for representing and generating such data. This is followed by

the proposal of four network delay models at different levels of abstraction:

Constant Delay, Constant Bandwidth, Latency-Rate, and INET. The models

are evaluated for accuracy by means of a case study using real-world data

from an ASML TwinScan test bench machine, and for simulation speed using

synthetic data generated by GeNSim.

The experimental evaluation demonstrates that each model has a different set of

strengths and weaknesses, and none of the models pass all speed, accuracy, and

usefulness requirements simultaneously, demonstrating an apparent tradeoff.

Based on these findings, we propose a multi-step modeling approach, leveraging

the strengths of multiple models and canceling out their weaknesses.
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1

Introduction

In recent years, Distributed Cyber-Physical Systems (dCPS) have emerged as a corner-

stone of innovation across many industries, including healthcare, industrial automation,

robotics, and avionics. These dCPS comprise heterogeneous multi-core or many-core sys-

tems connected through complex networks (1). As these systems are pushed to reach new

technological heights, their increasing complexity introduces significant challenges. Tradi-

tional approaches of evaluating dCPS designs, such as constructing physical prototypes,

are often impractical due to the high complexity, costs and time consumption associated

with an iterative design processes.

Automated Design Space Exploration (DSE) for dCPS has gained attention as a promis-

ing approach to address this challenge. DSE refers to the process of (automatically) search-

ing the vast design space of all possible dCPS configurations for one or more configurations

that best satisfy the given design objectives. This process can significantly reduce dCPS

design costs and efforts.

However, DSE in the context of dCPS poses several critical challenges. First, the complex

nature of these systems creates a design space with an extremely large number of possible

configurations to evaluate. If the assessment of these design points is conducted via a

simulation model, even achieving marginal reductions in execution time can yield large

cumulative gains. Second, in order to evaluate a design point, the simulation model needs to

be able to capture both the computing hardware components and the software components

of the system. In order to do this, one essential part of the simulation model is the network

model, which must accurately represent the delays and complex interactions in the network

connecting the dCPS subsystems.

Network delays can drastically affect the performance of dCPS, making their accu-

rate modeling essential for evaluating potential design configurations using DSE. Current
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1. INTRODUCTION

methodologies lack a comprehensive approach that fully addresses the nuances of network

topology and traffic within a dCPS. Previous research has primarily focused on exploring

resource-sharing abstractions for single resources like memory controllers, but have not

extended these methods to the complex, interconnected networks found in dCPS.

This gap highlights the need for network delay models that are both accurate and com-

putationally efficient. Specifically, models should be capable of capturing the nuances of

network topology and traffic within dCPS while being suitable for rapid evaluation of nu-

merous design points. Moreover, they should allow for the exploration of different network

configurations, such as changes in topology or bandwidth, which is crucial in DSE.

DSE2.0 (1) is an ongoing research project that aims to extend the state-of-the-art in

DSE, to find ways to overcome the aforementioned challenges, and to leverage the DSE

process for large industrial dCPS like the ASML TwinScan machine. This thesis aims to

support this research project by comprehensively proposing, developing, and validating

a network delay model, that is suitable to be used in the context of DSE of dCPS. The

goal is to find a model that strikes an appropriate balance between accuracy (how well

the model is able to replicate the real-world system), speed (how long it takes to evaluate

design points), and general usefulness (how well the model is able to adapt to new system

configurations).

The contributions of this thesis are threefold:

1. Formalization of network topology and traffic framework: This work es-

tablishes a conceptual framework for network topology and network traffic called

GeNSim. This framework involves a description of which real-life elements of net-

work topologies and network traffic are involved in the model and which are not,

laying a foundation for representing any network delay model and its traffic in terms

of this framework. It also details methods for automatic generation of these data

structures.

2. Proposal of four network delay models: Leveraging the established framework,

the thesis proposes four network delay models at different levels of abstraction: the

Constant Delay model, the Constant Bandwidth model, the Latency-Rate model,

and the INET model. Each model offers a different trade-off between accuracy and

computational complexity. By evaluating models across this spectrum, we aim to

identify an approach that is both accurate enough to provide meaningful insights

and fast enough to be practical for DSE.
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3. Experimental evaluation: To validate the applicability of the proposed models,

each model is evaluated based on two key performance indicators: modeling accuracy

and simulation speed. We assess their accuracy using real-world data from an in-

dustrial case study involving an ASML TwinScan Test Bench, providing insight into

how well the models capture actual network behavior. Additionally, we evaluate their

simulation speed and scalability using synthetic data generated by GeNSim. This

dual evaluation favours a model that is reasonably accurate and fast, and therefore

potentially practically applicable in real-world dCPS design scenarios.

The research presented in this thesis is structured as follows. Chapter 2 provides the

necessary background information to understand the concepts in this report. Chapter 3

reviews the previous work related to this thesis. Chapter 4 outlines the methodology used

in this research. In Chapter 5, we describe the formalization of network topologies and

traffic and introduce the GeNSim framework. Chapter 6 details the proposed network

delay models. Chapter 7 presents the experimental evaluation and results. Chapter 8

discusses the findings of the previous chapters. Finally, Chapter 9 concludes the thesis

with a summary of the contributions and suggestions for future work.
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2

Background

This chapter provides the basic concepts required to understand this thesis. We begin

with an introduction to Design Space Exploration (DSE) and its relevance to distributed

cyber-physical systems (dCPS). We then delve into network modeling, and how this relates

to discrete-event simulation. Finally, we discuss network model validation techniques and

the related practical considerations.

2.1 Design Space Exploration

Design Space Exploration (DSE) is the process of systematically evaluating a space of

candidate design solutions, called design points, that satisfy a given set of design objectives

(1). In the context of complex systems, DSE aids designers in making informed decisions

by providing insights into trade-offs between different design parameters. The DSE process

typically consists of four main stages, as illustrated in Figure 2.1):

1. Modeling: the system is discovered, described, abstracted, and mapped to a repre-

sentation of the system that captures essential characteristics while omitting unnec-

essary details; a model.

2. Design space creation: based on the design choices, a design space of all possible

design points on the model is spanned. It is common practice to perform a prelimi-

nary pruning phase, removing design points that are invalid in ways that are easy to

detect.

3. Design space exploration: a search algorithm evaluates the available design points

in the design space. Some examples of search algorithms are exhaustive search and
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2. BACKGROUND

heuristic-based (e.g. evolutionary algorithms or simulated annealing) search. The

algorithm may dynamically prune design points based on evaluation results.

4. Results: the outputs of a DSE process are intermediate outcomes or conclusive

design recommendations.

DSE has been successfully adopted in several areas, such as low-level hardware design for

Systems-on-a-Chip (SoC) (3) and Multiprocessor System-on-a-Chip (MPSoC) (4). How-

ever, the growing complexity of distributed Cyber-Physical Systems (dCPS) poses several

challenges for DSE, such as combinatorial explosion and simulation scalability.

Figure 2.1: The general Design Space Exploration workflow (1).
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2.2 Distributed Cyber-Physical Systems

2.2 Distributed Cyber-Physical Systems

Distributed Cyber-Physical Systems (dCPS) are systems that integrate computational el-

ements with physical processes, where the computational elements are distributed across

multiple devices that interact through complex internal networks. Examples of dCPS

include industrial automation systems, autonomous vehicles, smart grids, and advanced

manufacturing equipment like the ASML TwinScan lithography machines. Key character-

istics of dCPS include:

• Heterogeneity: dCPS consist of a diverse set of computing and physical compo-

nents, including processors, sensors, actuators, and communication networks, often

from different vendors and with varying capabilities.

• Concurrency: Multiple components operate concurrently, interacting and exchang-

ing information in real-time.

• Timing Constraints: Many dCPS applications are time-critical, requiring precise

synchronization and meeting strict timing deadlines.

• Scalability: dCPS often need to scale to accommodate more components or higher

performance requirements.

Designing dCPS is challenging due to the need to manage complex interactions between

computational and physical components, ensure reliability and safety, and meet perfor-

mance requirements. While DSE offers a structured approach to navigate the complex

design space of dCPS, several challenges hinder its effective application. Firstly, the het-

erogeneity and scale of dCPS result in an enormous design space with a combinatorial

explosion of possible configurations. Evaluating each design point is computationally in-

tensive, making exhaustive exploration impractical. Secondly, accurately modeling both

the hardware and software components of dCPS is essential for reliable evaluation. This

includes processors, memory systems, sensors, actuators, and importantly, the commu-

nication network. High-fidelity models provide accurate results but are computationally

expensive, leading to long simulation times. Conversely, abstract models run faster but

may lack sufficient fidelity to be accurate.
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2. BACKGROUND

2.3 Network Modeling

Network modeling involves the abstraction of communication network features and prop-

erties, enabling the creation of analytical representations with varying levels of complexity

(5). There are various types of network modeling approaches, including: stochastic mod-

eling, analytical modeling, and simulation modeling.

Stochastic models assume the system evolves randomly over time according to some

stochastic process. If the system state Xn is observed at discrete time points n = 0, 1, 2, . . .,

we say that Xn, n ≥ 0 is a discrete-time stochastic process. If the system state X(t)

is observed continuously in time, it is described by a continuous-time stochastic process

X(t), t ≥ 0. It is a common assumption in stochastic modeling of network traffic that pack-

ets arrive at the server according to a Poisson process. A Poisson process is a continuous-

time stochastic counting process of which the inter-arrival times follow an exponential

distribution and are Independent and Identically Distributed (IID) (6). Due to this as-

sumption of arrivals that follow a Poisson process, discrete-event dynamic systems are often

modeled using continuous-time versions of the stochastic processes (5). While stochastic

models are valuable for understanding general network behavior under random processes,

they may not be ideal for DSE of dCPS. Stochastic models often rely on assumptions like

Poisson arrivals, which may not accurately reflect the specific and deterministic traffic pat-

terns in dCPS. Moreover, they can become mathematically complex and less tractable for

large-scale systems. Some popular examples of stochastic modeling techniques are Markov

Chains (6), Queuing Networks (7), and Petri Nets (8).

Analytical models use mathematical equations to represent network behavior. They may

be used in a stochastic context if necessary, but they are not inherently stochastic. Rather

they have parameters that can be tuned to achieve results that are similar to the behaviour

of the real-life system. An example of this is the Latency-Rate servers abstraction, which

is commonly used to analyze traffic scheduling algorithms. The model is characterized by

two parameters: the maximum server latency Θi and the minimum service rate ρi. The

service rate represents the guaranteed rate at which the server processes packets sent by the

client, while the latency represents the maximum time until that rate can be guaranteed

(9). This guaranteed service to a client is independent of the service requests from other

clients, and is achieved by the use of accounting (reserving resources) and enforcement (no

more service when the budget is depleted) (2). A system busy period is a maximal interval

of time during which the server is never idle (9). Figure 2.2 shows an example of how a

Latency-Rate server might react to incoming bursts of traffic (2).
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2.3 Network Modeling

Figure 2.2: A Latency-Rate server and its associated concepts (2).

Simulation models use computer simulation software to evaluate network behavior. The

de facto standard of network simulation is discrete-event simulation, which is a technique

for modeling the behavior of a complex system as a sequence of discrete events that occur

over time. The number of events is finite, and can include events such as messages ex-

changed between system components, or state transitions (10). There are two basic types

of discrete-event simulation: trace-driven simulation, where the simulation inputs come

from data captured on the real system, and and stochastic simulation, where the workload

is characterized by probability distributions (5). Events in a trace-driven discrete-event

simulation are usually defined in terms of their occurrence time, duration, and impact on

the system state. The state of the system is represented by a set of variables that capture

important aspects of its behavior, such as the number of entities in the system, the status of

resources, or the progress of a particular process. At each event, the simulator determines

the impact of the event on the system state, updates the relevant variables, and schedules

any future events that may be triggered by the current event (10).

Discrete-event simulations have become a popular technique for modeling complex com-

puter networks and for analyzing their behavior. One popular implementation is the INET

framework for OMNeT++, an open-source network simulation library that is able to model

various network protocols and emulate network hardware components (11). Another ex-

ample is NS-3, an open-source discrete-event network simulator designed for research and

educational purposes. It provides detailed models for network protocols and supports

simulation of complex network topologies (12).

9



2. BACKGROUND

Discrete-event simulations are valuable tools for understanding the complex interactions

between components in a dCPS and for guiding dCPS design decisions. However, there

are several research gaps and challenges related to discrete-event simulation for dCPS

design space exploration. One limitation is the scalability of discrete-event simulations

for large-scale and complex dCPS, as the number of events, interactions, and components

increases (13). Another challenge is the lack of standardized modeling approaches and

simulation tools for dCPS. While commercial tools such as NetSim, OPNET, and QualNet

provide a comprehensive set of features for simulating computer networks, open-source

simulators such as OMNeT++, NS-2, NS-3, and J-SIM offer platforms that are extensible

for researchers and developers to experiment with non-standard network configurations

and protocols.

2.4 Model Validation

Model validation is often defined as the substantiation that a computerized model within

its domain of applicability possesses a satisfactory range of accuracy consistent with the

intended application of the model (14). More specifically, we will mainly be focusing

on model scenario validation, which refers to the process of proving that a reasonable

relationship exists between the simulation experiments and the real life situations in which

the corresponding technology will be deployed (15). Providing this validity substantiation

is a critical step in the process of developing a (simulation) model, as models based on

hypothetical relationships, faulty code or incorrect data are void of meaning. Still, model

validation is known as one of the most challenging methodological issues associated with

computer simulation techniques, because there are many approaches and not one given

plan that works for every project (16).

One commonly accepted method to validate a simulation model is the Naylor and Fin-

ger validation approach (16), which includes three phases: Face Validity (asking system

experts whether the model behavior is reasonable), Validation of Model Assumptions, and

Validation of Input-Output transformations (comparing the real system’s and the model’s

outputs using the same input data) (17). This is also known as Multistage validation, com-

bining the three historical methods of Rationalism, Empiricism and Positive Economics.

Additional validation methods may include: Historical Data Validation (using part of the

historical system data to build the model, and the remaining data to test if the model

behaves as the system does to avoid overfitting the model), Extreme-Condition Testing

(whether the model output is plausible for extreme and unlikely conditions), and Turing

10
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Tests (system behavior experts are asked if they can discriminate between system and

model outputs) (14). Turing tests by expert opinion are a popular way to incrementally

validate a model (5).

Many of these methods aim to validate a simulation model by comparing its output

to real-world data. To obtain this real-world data it must be collected and empirically

verified. Data collection in the context of network modeling for dCPS begins with the step

of network exploration, in which the topology of the network is automatically discovered

and registered. It is also possible to do this manually, but effort is reduced by a great deal

by employing automatic network discovery due to the complex nature of dCPS networks.

Following that step comes network measurement, which deploys tracing software on the

topology to measure network logs and performance metrics. These logs may be used to

drive trace-driven discrete event simulations, and then to compare with the simulation

outputs.

However, network exploration and measurement suffer from a similar issue as discrete-

event simulations: there is a severe lack of standardized approaches and tools. Available

network exploration tools mainly differ in the level of automation and comprehensiveness.

Tools such as Advanced IP Scanner, LanTopoLog, and NetScanTools are primarily used

for port scanning, host discovery, and network mapping, while Open-AudIT, Device42,

and Total Network Inventory offer more comprehensive network discovery, inventory man-

agement, and IT documentation capabilities. Network measurement tools can be broadly

categorized into two categories: monitoring platforms and distributed tracing platforms.

Monitoring platforms, such as Datadog, New Relic, and Netdata provide observability

across infrastructure, applications, and logs, while distributed tracing systems, such as

Jaeger, and Zipkin, visualize the timing and duration of requests in complex distributed

systems. Some tools, such as AppDynamics and Dynatrace, offer both monitoring and

distributed tracing capabilities.
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3

Related Work

This chapter reviews the existing literature related to network modeling, particularly fo-

cusing on its application to the context of DSE for dCPS. The discussion progresses from

general network delay models to specific studies that have explored resource abstractions

and their relevance to DSE. Finally the research gap this thesis aims to address is described.

Network delays have been modeled for a wide range of applications beyond DSE. Sec-

tion 2.3 discusses some high-level approaches and some examples of models that adhere

to those approaches. Out of these approaches, building a simulation model of the entire

network topology seems to be the de facto standard for practical and industrial use cases

of network delay modeling. Though, the simulation models that result from this approach,

while highly accurate, are impractical for DSE due to their slow execution times. Since the

DSE process involves evaluating a potentially massive number of possible network config-

urations, a model that is effective in this use case must strike a balance between accuracy

and speed.

This phenomenon of the speed-accuracy tradeoff is not limited to just network modeling.

(18) provides an in-depth analysis of SDRAM interference in memory controllers, com-

paring a detailed implementation with Latency-Rate server abstractions. Their research

demonstrates the efficacy of Latency-Rate abstractions in simplifying the analysis of mem-

ory controller behavior while maintaining accuracy. This study illustrates the potential of

Latency-Rate abstractions for single-step resources like memory controllers, emphasizing

the importance of abstraction in reducing computational complexity. However, their fo-

cus remains on a single resource type, the memory controller, without extending to the

interconnected nature of network resources. The distinction in this thesis lies in its focus

on the distributed and complex nature of network resources in distributed Cyber-Physical

Systems (dCPS), an area not addressed in their study.

13



3. RELATED WORK

(19) extends the application of Latency-Rate servers by including the modeling of shared

resources in real-time streaming applications on a multi-processor system-on-chip (MP-

SoC). Their work explores CPU sharing, network-on-chip (NoC) sharing, and memory

sharing within an FPGA-based system. It shows how Latency-Rate servers can be used as

analysis models for these shared resources, though primarily in a data flow model rather

than a simulation model, and their scope does not include network-wide abstractions. Be-

sides, this work is making models of the worst-case timing behavior to be able to compute

guaranteed minimum throughput. The latency and rate parameters are hence computed

analytically based on intimate knowledge of all hardware. This work builds on these

insights by developing a simulation model that leverages Latency-Rate abstractions for

network resources that infers the parameters from the available data and they correspond

to typical, rather than worst case, network behavior.

(1) reviews the state-of-the-art in DSE for dCPS. They argue that efficient and scalable

DSE technology for dCPS is largely non-existent and represents a significant research gap.

The paper identifies several scientific challenges, such as the need for scalable modeling

techniques and efficient exploration of vast design spaces. The authors emphasize that

current DSE methods, often used in Systems-on-Chip (SoC) and Multi-Processor Systems-

on-Chip (MPSoC) designs, are insufficient for the more complex and heterogeneous nature

of dCPS.

A notable point in their review is the use of SESAME, a trace-driven simulation and

modeling framework for embedded MPSoC systems. SESAME allows for the evaluation

of design points using high-level abstractions, and supports the exploration of different

architectural configurations through a combination of genetic algorithms and discrete event

simulation. Despite its utility in MPSoC domains, the application of SESAME to network-

wide DSE in dCPS remains limited. This limitation highlights the necessity for extending

such frameworks to accommodate the unique requirements of dCPS, particularly in terms

of network modeling and scalability.

In summary, while significant literature has been written on network modeling and the

application of Latency-Rate servers for resource analysis, there remains a critical gap in

their application to DSE for dCPS. The existing research typically focuses on single resource

types or small-scale embedded systems. This thesis aims to bridge this knowledge gap by

developing network delay models at different levels of abstraction, and evaluating them

on the basis of their applicability to the large-scale, complex nature of DSE in dCPS,

contributing a novel solution to this open area of research.
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Methodology

The primary objective of this research is to evaluate the suitability of a given set of network

delay models for Design Space Exploration (DSE) of distributed cyber-physical systems

(dCPS). Given the inherent subjective nature of suitability, this study attempts to quantify

this concept in terms of three distinct metrics:

• Accuracy: the extent to which the estimated delays of the target model compare

to the real-world behaviour of the modeled system.

• Speed and Scalability: the time it takes for a simulation of the target model to

complete and how this scales as a simulation grows in complexity.

• Usefulness: whether the target model is able to capture the core DSE activities of

altering: (1) the network bandwidth, (2) the network latency, (3) both of these at

the same time, or (4) neither of these.

This research is conducted in three broad, consecutive steps, each one corresponding

to one of the contributions of this thesis. Figure 4.1 illustrates the elements of, and

dependencies between the contributions of this work as a high-level flow chart.

The first step, as will be discussed in Chapter 5, involves creating an abstraction of the

concepts of network topologies and network traffic. This abstraction process is a common

step in modeling, and helps with identifying the key concepts that are relevant to the

modeling domain. Once this framework is established and it is clear which concepts are

included and excluded from our abstract representation, it can be applied and tested. First,

it is applied to real-world networking data from an industrial case study. This not only

validates the framework’s capability to capture the relevant data, but also provides a basis

for assessing the accuracy metric. Second, a method for generating synthetic instances of
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the data is proposed. This synthetic data is employed to evaluate the speed and scalability

metrics of the models, testing the scenarios for which real-world data is not available.

The second step, further discussed in Chapter 6, is dedicated to defining the four pro-

posed network delay models that will be evaluated in this research. These models represent

a spectrum of abstraction, ranging from a network delay model that is very abstract, to

one that captures many fine details. Discussing the core ideas behind each of the models

enables an evaluation of their usefulness in supporting the aforementioned DSE activities.

The final step of this process, as discussed in Chapter 7, involves conducting two ex-

periments on the network delay models. The first experiment measures model accuracy

by comparing the model output with that from the real-world industrial case study. The

second experiment measures the models’ speed and scalability by leveraging synthetic net-

working data to determine how well each model scales in terms of simulation speed as the

workload increases.

Figure 4.1: A flow diagram that illustrates the dependencies between the contributions of
this thesis. The blue arrows represent synthetic data, the red arrows represent real-world data,
and the green arrows represent models that interpret this data and model the network delay
based on it.
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5

Network Topologies and Traffic

In order to evaluate a network delay model, one must first be able to define network

topologies and network traffic in a reproducible manner. This section details the design of

GeNSim (Generate Network Simulations), an open-source data framework and Python

Command Line Interface (CLI) application developed for this research project to represent

network topologies and traffic in a standardized format.

GeNSim supports representing networking data by printing directly to the console, or by

outputting a JSON file, XML file, or an OMNeT++ simulation. Additionally, GeNSim can

convert networking data between its various output formats and validate them to ensure

they conform to the GeNSim data model. By making GeNSim open-source, subsequent

research projects may use its functionalities, with the repository currently available on

GitHub at https://github.com/quintal-william/gensim.

5.1 Data Model

In GeNSim, a network topology is defined as a graph of nodes. A node may be one of

two types: a leaf node or a topological node. Leaf nodes represent the smallest possible

communicating entities (e.g. end-hosts, switches). Topological nodes, on the other hand,

represent sub-topologies, which are themselves graphs of nodes. This hierarchical structure

allows for the easy definition of complex structures made up of nested topologies. Con-

nections between leaf nodes are represented by edges, which are uni-directional. However,

in practice, edges are typically made bidirectional by creating one for each direction. Fig-

ure 5.1 illustrates an example of the internal representation of a simple topology of two

leaf nodes connected by a 1 Gbps edge, which is also visually represented in Figure 5.2.
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1 {

2 "type": "topology",

3 "id": "ExampleMesh",

4 "nodes": [

5 {

6 "type": "host",

7 "id": "ExampleMesh_0",

8 "edges": [

9 {

10 "type": "edge",

11 "id": "ExampleMesh_0_ExampleMesh_1_1000000000",

12 "source": "ExampleMesh_0",

13 "destination": "ExampleMesh_1",

14 "bandwidth": 1000000000

15 }

16 ]

17 },

18 {

19 "type": "host",

20 "id": "ExampleMesh_1",

21 "edges": [

22 {

23 "type": "edge",

24 "id": "ExampleMesh_1_ExampleMesh_0_1000000000",

25 "source": "ExampleMesh_1",

26 "destination": "ExampleMesh_0",

27 "bandwidth": 1000000000

28 }

29 ]

30 }

31 ]

32 }

Figure 5.1: A simple topology of two leaf nodes connected by a 1 Gbps edge as represented
by GeNSim in JSON format, visually represented in Figure 5.2.

Network traffic in GeNSim is defined as a list of arrivals. Arrivals represent messages

of a certain size that enter the network at a specified time, flowing through the network
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Figure 5.2: A visual representation of the GeNSim JSON representation of a simple two-
node topology given by Figure 5.1

from a source to the intended destination. Figure 5.3 provides an example an internal

representation of a network traffic trace corresponding to the network topology shown in

Figure 5.1.

5.2 Synthetic Data

In order to generate synthetic instances of the data in the defined format, the concept

of connectedness is introduced. The connectedness variable C refers to the probability

that two leaf nodes are bi-directionally connected. This logic extends to connecting two

topological nodes as well: C is the probability that two leaf nodes are connected for each

combination of leaf nodes in the to-be-connected topological nodes. Thus, any two nodes

may be connected according to a connectedness probability C, where C = 1 means all leaf

nodes are fully interconnected, and C = 0 implies no connections between any pair of leaf

nodes. Intermediate values represent varying degrees of connectedness.

This parameter C creates opportunities to randomly generate a variety of potentially

complex network topologies. GeNSim includes two built-in topology generators, and allows

to easily define custom topology generators:

1. Mesh: Interconnects a number of nodes according to a given connectedness param-

eter C.

2. Star: Connects a number of nodes to a central node according to a given connect-

edness parameter C.

In addition to these standard topologies, various combinations can be experimented

with. As an example, creating a star topology with C = 0.5, with as a central node a
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1 {

2 "type": "traffic",

3 "id": "ExampleMesh-Traffic",

4 "arrivals": [

5 {

6 "type": "arrival",

7 "id": "0.00971_ExampleMesh_0_ExampleMesh_1_974",

8 "time": 0.00971,

9 "source": "ExampleMesh_0",

10 "destination": "ExampleMesh_1",

11 "size": 974

12 },

13 {

14 "type": "arrival",

15 "id": "0.02208_ExampleMesh_1_ExampleMesh_0_580",

16 "time": 0.02208,

17 "source": "ExampleMesh_1",

18 "destination": "ExampleMesh_0",

19 "size": 580

20 }

21 ]

22 }

Figure 5.3: A short network traffic definition applied to the topology shown in Figure 5.1 as
represented by GeNSim in JSON format.

mesh topology with C = 1, results in the leaf nodes of the star topology connecting to, on

average, half of the central nodes, which are internally fully connected.

Once a topology is generated and saved to a file, the next step is to generate traffic for it.

GeNSim provides three methods to generate network traffic, with the option to implement

custom generators:

1. Constant interval: Assigns a uniform value to each inter-arrival time.

2. Poisson distribution: Draws inter-arrival times from an exponential distribution.

All arrivals are independent.

3. Packet train model: Creates “packet trains”, which are bursts of packets with a

given maximum train length, and draws the time between “cars” of the train and the
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time between trains from two different exponential distributions.

Existing network modeling tools often lack the flexibility or specificity required for dCPS

modeling. For instance, many tools do not support hierarchical topologies or the genera-

tion of synthetic traffic that accurately reflects dCPS characteristics. GeNSim addresses

these gaps by providing a customizable framework that can represent hierarchical struc-

tures through topological nodes and leaf nodes, allowing for the modeling of complex,

nested network architectures common in dCPS. Additionally, its traffic generation capa-

bilities, including support for different distribution models and packet train behaviors,

enable the creation of realistic synthetic workloads. This flexibility makes GeNSim a novel

contribution that fills a critical need in network delay modeling for DSE of dCPS.
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6

Network Model Creation

This section provides a description of the four network delay models that are evaluated in

this thesis. These models were chosen to span the abstraction spectrum, first discussing a

very abstract model, incrementally moving to more detailed models, ending at a model that

captures many network details. For each model, it is discussed how it uses its parameters

to approximate network delays. For models that are defined by an equation, the equation

is formulated in the following terms: ω is the vector of all messages contained in a network

traffic trace, ta, tf , and s are the functions that represent the arrival time (in seconds),

finishing time (in seconds), and size (in bytes) of a given message, respectively. As an

example, ta(ωk) refers to the arrival time of the kth message in the network traffic trace

ω. Furthermore, each network model’s usefulness for DSE of dCPS is discussed in terms

of whether the target model is able to capture the four core DSE activities discussed in

Section 4. By evaluating these models with different levels of abstraction, one model could

be chosen that is appropriately abstract such that is has reasonable speed, accuracy, and

usefulness for the purpose of DSE for dCPS.

6.1 Constant Delay Model

Starting at the most abstract end of the spectrum, the Constant Delay model always

adds the same delay to any message coming into the system. This delay parameter Θ is

the only parameter of this model, and it is set at the start of a simulation. The Constant

Delay model is non-blocking, meaning that it may handle any number of network messages

simultaneously. Therefore, it can be represented by the Equation 6.1, which calculates the

finishing time of the kth network message tf (ω
k) by adding the arrival time ta(ω

k) to the

constant delay Θ.
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tf (ω
k) = ta(ω

k) + Θ (6.1)

In the context of DSE for dCPS, the Constant Delay Model is most useful in the case of

wanting to add or remove hops to the network topology, altering the mean network latency

in the process. This example is represented by usefulness case 2. Besides that, it may also

be used for case 4, in which there are no changes made to the network.

6.2 Constant Bandwidth Model

The Constant Bandwidth Model approximates the delay of the kth network message in trace

ω, by dividing the message size s(ωk) by a bandwidth ρ in bytes per second, as shown in

Equation 6.2. The message size will be provided dynamically during the simulation based

on the defined network traffic trace. The bandwidth ρ is a static parameter that is set at

the start of a simulation.

tf (ω
k) = ta(ω

k) +
s(ωk)

ρ
(6.2)

Similarly to the Constant Delay model, the Constant Bandwidth model is non-blocking

by design. Furthermore, one could argue that it is less abstract than the Constant Delay

model, because it takes the size of the network message into account. It is therefore most

fit for the usefulness cases 1 and 4, in which either the bandwidth of the network is altered,

or nothing at all.

6.3 Latency-Rate Model

The Latency-Rate Model is based on the Latency-Rate servers abstraction, as discussed in

Section 2.3. The Latency-Rate servers abstraction uses Equation 6.3 to calculate the term

tf (ω
k), which represents the worst-case finishing time of the kth network request. We,

however, will use the equation to approximate the actual network delay.

tf (ω
k) = max(ta(ω

k) + Θ, tf (ω
k−1)) +

s(ωk)

ρ
(6.3)

The Latency-Rate Model combines Equations 6.1 and 6.2, resulting in a model with two

parameters: the latency Θ, and the rate ρ. These parameters, similarly to those of the

other analytical models, are fixed, and supplied at the start of a simulation. Besides that,
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Equation 6.3 introduces a "max" clause, ensuring that tf (ωk) does not preceed tf (ω
k−1)+

s(ωk)
ρ , which makes it a blocking model.

Owing to its dual parameter setup, the Latency-Rate server is able to work with all four

usefulness scenarios. If a hop is added to the network, the latency parameter is altered,

if a link changes in bandwidth, the rate parameter is tweaked. This also extends to the

scenarios in which none or both of these are updated.

6.4 INET Model

The INET Model is vastly different from the other three models discussed in this section.

It is not represented by a single calculation, rather, it leverages the OMNeT++ INET

framework to simulate a part-by-part replica of the network topology that is being modeled.

The INET model is able to simulate complex network interactions with a high level of

detail. It is therefore the least abstract of the four network delay models considered in this

thesis, and the most difficult to set up. It requires intimate knowledge of a given network

topology. This data may be collected manually, or using automated network crawlers

such as OpenAudIT (20). Besides, it needs a detailed view of all interfering traffic to be

considered accurate.

In terms of usefulness, the INET Model is able to cover all four DSE of dCPS use-cases.

Since it simulates the entire topology and all its network interactions, making changes

to the topology is as trivial as just changing the in-model topology to reflect the newly

desired topology. Besides, since the INET Model does not approximate the delay using an

equation, it has no parameters, which makes it simpler to use. These characteristics make

it highly useful for DSE of dCPS.
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7

Experimental Evaluation

This chapter documents the experimental evaluation of the models defined in Chapter 6

according to the network topology and traffic framework described in Chapter 5. This

evaluation is twofold, consisting of one experiment to evaluate the models’ accuracy using

data from an industrial case study, and another experiment to evaluate the models’ speed

using generated network traffic and topology data. This distinction in data source exists

because the former experiment requires comparing the model output to a real-world data

stream, while the latter experiment requires testing the models against arbitrary topologies

and traffic patterns, where obtaining real-world data is highly difficult and largely irrelevant

to the results of the experiment. Evaluating especially these two factors is crucial for

determining which model is most suitable for DSE of dCPS, striking the balance in the

speed-accuracy tradeoff.

7.1 Implementation

This section describes the experimental setup and implementation details for the model

evaluation process. The setup includes a custom, model-agnostic simulation framework,

allowing for the evaluation of each of the four network delay models defined in Section 6.

Additionally, this section outlines the system configuration used for running the simulations

in detail.

7.1.1 Simulation Setup

The experiments are conducted using the discrete event simulator OMNeT++. Within

this simulation software, a custom lightweight simulation framework was designed to aid

the experimentation process. As shown in Figure 7.1, this framework consists of three
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core components that connect to the network model and control the flow of messages: the

network entry, the network exit, and the network analyzer. A message, in this context,

is considered to be an object with a unique identifier, the identifiers of the source and

destination hosts in the topology, and a payload size in bytes.

The network entry point is tasked with receiving an incoming message, adding the current

simulation time as metadata to the message, and forwarding it to the source host in the

network model. The network model mimics the related delay and sends the message to the

network exit point, which adds the current simulation time as metadata to the message

object. The network analyzer is the core component that orchestrates the entire process.

It reads in a file that describes the network traffic, sends this traffic to the entry point

accordingly, receives the messages from the exit point, and writes the resulting messages

with their modeled delays to a JSON file.

GeNSim, the custom data framework and CLI described in Section 5 is responsible for

providing the network topology and traffic data to the OMNeT++ simulation. Whether

we are testing a real-life topology or a generated one, GeNSim is able to convert a JSON file

describing a topology into .ned and .ini files that can be directly imported into OMNeT++.

Furthermore, the network analyzer was built to read files in GeNSim JSON format directly,

removing the need for a conversion step. As long as the data is in the expected JSON

format, it does not matter if it is real or synthetic.

This simulation framework is designed to be network model agnostic, allowing us to treat

the model as a “black box”; network messages go in, and after a certain delay, they come out.

This modular design simplifies the evaluation process, as illustrated by Figure 7.1, which

shows how it effortlessly connects to both the single-node Latency-Rate model (left) and

the multi-node INET model (right). Furthermore, separating this logic into three distinct

components ensures that the network analyzer logic can be removed if needed. This enables

the black box framework to not only be used in this experimental environment with traffic

supplied by GeNSim, but also as a submodule of a larger simulation of the entire dCPS.

7.1.2 Experimental Environment

The experiment was conducted on a laptop running Windows 10 Education, Version 22H2,

Build 19045.4412, an Intel Core i5-7200U CPU, and 8.00 GB RAM. Simulations were

executed using OMNeT++ version 6.0.1, in the Cmdenv environment, utilizing 2 CPUs

with 1 run per process. System consistency was maintained across all benchmark runs,

meaning that, for example, no background processes were intentionally booted or closed,

and the power cable was kept in at all times. All experiments were performed in randomized
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Figure 7.1: Two examples of the simulation framework, showing how a Latency Rate model
(left) and an INET model (right) are instrumented using the entry point, exit point, and
network analyzer.

order to mitigate the statistical impact of any unaccounted for temporal changes in the

system (e.g. temperature, independent background processes). All of this is done to ensure

that any trend in the results is less likely to be attributed to the environment in which the

experiments were run.

7.2 Network Model Validation: Industrial Case Study

The purpose of this experiment is to validate the accuracy of the proposed network delay

models using real-world data from an industrial setting. More specifically, network traffic

data was collected from an ASML TwinScan Test Bench machine, which is a dCPS that

is set up to mimic a real ASML Lithography machine setup. This section explains the

steps required to prepare for and execute the model validation experiment, followed by a

showcase of the results obtained from the experiment.

7.2.1 Data Collection and Preparation

For the model validation experiment, the ASML TwinScan network topology that the ex-

periment was conducted on needs to be described in terms of our network model framework.

This process can be executed manually, or a network may be crawled automatically using

a tool such as OpenAudIT (20). In our case, internal documentation of the network was

converted into the GeNSim topology representation using a simple Python script. This

resulted in an abstract view of the network topology, as shown in Figure 7.2, which shows

that the network that this case study is based on consists of one network switch that all
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hosts are connected to, a main host, the brains of the operation, a data host, which handles

all data traffic, and the embedded hosts, displayed at the top of the image, which handle

the various specific tasks that the dCPS is built to carry out. The network shown in the

case study is a subnet of a more complex network architecture.

Following that, the network traffic data was collected using a proprietary tool called

the TwinScan Integrated Platform Performance Suite (TiPPS) (21). TiPPS is specifically

developed by and for ASML to gather performance metrics of TwinScan machines, such

as network message size, message sending time and message receival time. Since TiPPS

operates on the software level, not on the network interface level, network message send and

receive times are measured from the start of sending the message to the end of receiving

the message. The delay is then calculated by subtracting the messages receival time from

the message send time. Although TiPPS itself is proprietary, it served as the basis for

a more broadly applicable, now open-source tool called the Platform Performance Suite

(PPS) (22), allowing other researchers to collect and analyze similar data in their work.

The relevant data for this experiment was extracted from the TiPPS models and converted

into the GeNSim traffic representation. However, data collection was limited to only two

of the dCPS subsystems, one being the main host of the TwinScan test bench machine, the

other being one of the embedded hosts (marked by the red squares in Figure 7.2. This is

because TiPPS is currently limited to only collecting traces from these types of machines.

Figure 7.2: A schematic view of the network topology of the dCPS that was used for this
case study. The observed hosts are marked in red.
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To ensure the validity of the experiment data, a preliminary statistical analysis was per-

formed. This analysis is essential for understanding the characteristics of the dataset and

identifying any potential difficulties that could impact the results. The “Initial” columns

of Table 7.1 show this statistical analysis for the two data sets which were collected with

the purpose of parameter tuning and validating the models. The table includes the to-

tal number of messages in the network trace, as well as the minimum, maximum, mean,

median and mode message delay in nanoseconds and message size in bytes.

An immediate observation one could make about this data is its skewness due to the

apparent presence of outliers. The maximum message delay is in the order of seconds, yet

the mean and mode are much closer to the minimum message delay of 500 nanoseconds.

Moreover, Figure 7.3 shows that the bandwidth distribution, given by size
delay , is also skewed,

with approximately 10% of the total data set having a relatively very low delay compared

to other messages of similar size. This shows that bandwidth is inconsistent in the data

set, thus there are probably also messages with relatively high delay compared to other

messages of similar size. These inconsistencies also hint to the data set having faulty

measurements.

Technically, these outliers could be a characteristic of actual network traffic. Though,

even if that were the case, it is difficult to measure a model’s performance with such skewed

data, because extreme values can disproportionately affect the error metrics. After careful

consideration and discussions with domain experts about this, quote, “fishy” data, outlier

removal was suggested to obtain a more representative dataset and ensure that the models

are evaluated on data that reflects typical network conditions.

To filter out the potentially anomalous data points, we employed the widely-recognized

Interquartile Range (IQR) method for identifying outliers (23). This method calculates

the quartiles of a sorted list of delays from all messages (Q1 and Q3) and uses those to

determine the interquartile range (IQR = Q3−Q1). Outliers are then defined as all data

points below Q1−1.5× IQR or above Q3+1.5× IQR. The messages are filtered to retain

only those whose delay falls within the calculated acceptable range.

After applying the IQR outlier detection, the refined data set metrics are more evenly

distributed and representative of typical network traffic. The “Filtered” columns of Ta-

ble 7.1 show that, while only removing some 20% of the data, it was possible to get the

max message delay and size much closer to the mean and median. Besides that, the mean

and median message delays and sizes were minimally affected, further illustrating the ini-

tial dataset’s skewness. Furthermore, Figure 7.4 shows a post-outlier-removal histogram

which looks very similar in shape to the pre-outlier-removal histogram, other than that
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Figure 7.3: Bandwidth distribution of the initial train data set

the extreme buckets [0, 0.02] and > 1 have drastically shrunk in size or have been removed

entirely.

Another observation of the initial data set is that nearly 45% of messages have the exact

same delay of 500 nanoseconds. This suggests the presence of measuring errors in our data

set, since it seems highly unlikely that this many messages would have the exact same

delay on nanosecond scale. This is likely due to a lower bound in TiPPS measurements.

Unfortunately, there is no way to mitigate this issue. However, the presence of many

messages with similar delays, especially with smaller sizes, is not at all unrealistic.

7.2.2 Model Parameter Tuning

All of the proposed models, except INET, have parameters that affect their calculations,

as discussed in Section 6. Using random parameter values would yield just as random

and thus inaccurate results. Parameter tuning needs to be employed in order to retrieve

meaningful results from the models.

First off, as was briefly mentioned before, two data sets are extracted from the complete

network trace, a training set and a testing set, to prevent overfitting. Parameters are

optimized using the training set by comparing the predicted delays against observed delays

from the actual traffic, optimizing for the Mean Squared Error, given by MSE =
∑

(yi−pi)
2

n .
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Figure 7.4: Bandwidth distribution of the train data set after filtering for outliers

MSE is chosen because, due to the squaring of the error term, the error becomes absolute

and it penalizes large errors more heavily.

For the single-parameter models, the optimal parameter can be found using a simple

brute-force optimization, in which the parameter is iteratively adjusted until the param-

eter value that yields the lowest MSE is found. In the case of the Latency-Rate model,

calibration is a bit less straightforward. Since the best a simple statistical model can do

to optimize for MSE is return the mean delay, the constant delay model will always yield

the best training MSE. As the rate approaches infinity, the latency-rate model effectively

converges to the constant delay model, nullifying the benefit of having two parameters.

To mitigate this issue, the rate parameter is fixed to the optimized parameter value from

the Constant Bandwidth model. The latency parameter is then optimized using a brute

force method, similarly to the single parameter models. This approach simplifies the opti-

mization process and retains the power of the Latency-Rate servers’ dual parameter setup,

while avoiding an excessively large optimization space.

The results of the parameter tuning phase are presented in Table 7.2. The table shows,

for each model, the parameter values that achieved the best MSE during training. These

optimal parameters were then applied to the test set. The table compares the MSE ob-

tained on the test set with the lowest possible MSE that could be achieved by each model on
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Metric
Train Data Test Data

Initial Filtered Initial Filtered
Count 204,411 164,736 261,376 207,948
Message delay (ns)
Min 500 500 500 500
Max 1,787,313,683 45,701 2,945,634,317 39,695
Mean 52,273 9,139 106,358 7,898
Median 5,775 5,451 4,949 4,718
Mode 500 (43.44%) 500 (43.15%) 500 (43.68%) 500 (43.61%)
Message size (B)
Min 32 32 32 32
Max 2,893,456 472 2,893,456 472
Mean 2,072 89 2,042 91
Median 40 40 40 40
Mode 40 (20.37%) 36 (22.85%) 40 (23.45%) 32 (22.21%)

Table 7.1: Comparison of metrics between initial data set and data set with outliers removed
for both the train and test data sets. Message delay is reported in nanoseconds, message size
is reported in bytes. The mode also reports the percentage of messages that have that value.

that same test data set. This difference in MSE highlights how well each model generalizes

beyond the training data.

Model Train MSE Param Test MSE Best Test MSE Difference
CD 1.131 9139 ns 0.911 0.894 0.0168
CB 1.659 0.023 B/ns 1.313 1.302 0.0108
LR 1.376 5183 ns 1.084 1.080 0.0033

INET 1.689 N/A 1.282 N/A N/A

Table 7.2: Parameter tuning results of the Constant Delay (CD), Constant Bandwidth (CB),
Latency-Rate (LR) and INET models. MSE (in s2) is divided by 10000 for legibility.

7.2.3 Results

After the network traffic data is collected and prepared, and the model parameters are

tuned, the real-world traffic data is used as input for the simulations, plugging each of the

four proposed network models into the simulation framework. For each experiment run,

the network analyzer creates a new file with the simulation time that each message entered

and exited the network. This data is used to compare the output of the network delay
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models with the real-life traffic using the appropriate error metrics. Table 7.3 provides a

complete set of accuracy results obtained from the experiment reported in nanoseconds,

divided by 10,000 for legibility. In this context, the "error" is defined as the predicted delay

minus the actual delay. This means that a positive error indicates the model overshooting

the delay and a negative error means that the model predicted the delay to be less than it

actually was.

Model MSE (ns2) Mean Error Median Error Min Error Max Error
CD 1.131 0.0000462 0.369 -3.656 0.864
CB 1.659 -0.5260587 -0.196 -4.431 2.002
LR 1.376 0.0000768 0.380 -3.913 3.709

INET 1.689 0.7134636 0.357 -8.739 4.475

Table 7.3: Error metrics for the Constant Delay (CD), Constant Bandwidth (CB), Latency-
Rate (LR) and INET models. All values are reported in nanoseconds, except Mean Squared
Error, which is reported in nanoseconds-squared. Errors are divided by 10,000 for legibility.

Notably, the INET model, despite having no parameters that need to be tuned, performs

very similarly to models with tunable parameters, especially on the mean squared error

and median error metrics. Additionally, the Constant Delay and Latency-Rate models

show very similar values across nearly all metrics.

7.3 Network Model Benchmarking: Synthetic Network Topolo-
gies and Traffic

This experiment aims to measure each model’s simulation speed and scalability using syn-

thetic network traffic and topology data generated by GeNSim, as discussed in Chapter 5.

Since DSE of dCPS involves evaluating a design space with a potentially massive number

of possible configurations, a model that is suitable for this use case must demonstrate this

property.

7.3.1 Experimental Setup

The goal of this experiment is to test two factors of scalability: scalability of network

topology complexity, and scalability of network traffic data size. These are two factors that

are important for a model to handle in the setting of DSE for dCPS, because evaluating

design points involves simulating traffic for an arbitrary large workload given an arbitrary

large network topology. To assess the former scalability factor, we used NSIM to generate
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fully-connected mesh topologies, each with an incrementally larger number of nodes, and

traffic patterns for those topologies, each following a Poisson distribution with a lambda

(the mean arrival rate per second) of 100 and a duration of 1000 seconds. This ensures

that we test the network topology scalability against a stable, somewhat realistic traffic

pattern. The latter scalability factor was evaluated by generating one mesh topology with

20 nodes and a connectivity of 0.5, followed by generating various Poisson traffic patterns

with lambda = 100 and an incrementally larger duration, to test how well the models fare

against larger and larger network traffic traces.

The experiment was then conducted by taking each network topology configuration and

running it through the simulation, using the synthetic traffic as input. Each configuration

was tested multiple times to account for variability. A common practice is to run each con-

figuration at least 30 times to obtain a reliable measure of central tendency. Furthermore,

all models were tested with the optimal parameters determined in the previous experiment,

since model accuracy is not measured during this experiment and the parameters are not

expected to have a significant effect on the simulation speed.

7.3.2 Results

Figures 7.5 and 7.7 show the results of both speed experiments the form of line charts.

However, since the INET model seems to be significantly slower than the other models,

Figures 7.6 and 7.8 present the same data, excluding the INET model to better see the

nuances in the other models’ speeds.

In the case of scalability of network topology complexity, all analytical models (Latency-

Rate, Constant Bandwidth, and Constant Delay) seem to be unaffected by the increase in

topology complexity. Among these models, the Constant Bandwidth model is marginally

slower than the other two. However, this speed difference is negligible compared to the

substantial speed difference with the INET model, which is orders of magnitude slower than

the other models. Besides that, the INET model slows down significantly in simulation

speed as the topology increases in complexity. This is very much expected, since the INET

model is the only one that simulates all network elements in the topology. Growing the

topology increases the complexity of the INET model and the number of hops it has to

simulate for a message to be sent from one host to another. This does not count for the

other models, which rely solely on simple arithmetic operations to approximate the delay

of an entire topology at once.

The scalability of network traffic test reveals similar findings: The INET model is sig-

nificantly slower than the other models. The Constant Bandwidth model is again slightly
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slower than the Latency-Rate and Constant Delay models. However, all analytical models

evaluated the same number of discrete events for each test, which is expected since they

all do one calculation per arrival. In this test all models exhibit linear growth in execution

time relative to the duration of network traffic, indicating predictable scaling behavior.

This is also expected, since messages in the simulation models are independent. One mes-

sage entering the system should generate approximately ten times less events than a trace

of ten events in the network, which is now confirmed by this experiment.

Figure 7.5: The model simulation time over network complexity.
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Figure 7.6: The model simulation time over network complexity without the INET model.

Figure 7.7: The model simulation time over network traffic duration.
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Figure 7.8: The model simulation time over network traffic duration without the INET
model.
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8

Discussion

This section compares the findings from Chapter 7 regarding the models defined in Chap-

ter 6 along the three key measures for DSE applicability in dCPS as outlined in Chapter 4:

speed, accuracy, and usefulness.

Speed is a straightforward measure to discuss, since the INET model is orders of mag-

nitude slower than the Constant Delay, Constant Bandwidth, and Latency-Rate models.

Among the analytical models, the Constant Bandwidth model is slightly slower than the

Constant Delay and Latency-Rate models, though this difference arises from the arithmetic

operations required to evaluate them, rather than the number of events generated by the

model, making the speed difference negligible. Furthermore, the INET model is unique in

simulating each host in the topology individually, unlike the analytical models that model

the entire topology with a single calculation. This means that the INET model becomes

slower as the topology becomes more complex, having to simulate an increasing number of

network elements. Depending on the number of design points and the size of the network

traces that need to be evaluated, the INET model’s scalability issues and its relative slow-

ness may render it less suitable for DSE of dCPS than the analytical models. Conversely,

the other models, owing to their high level of abstraction, are much faster and hardware

resource-friendly, which comes in handy in the case of extensive design space explorations.

In terms of accuracy, the Constant Delay model outperforms the other models discussed

in this Thesis in nearly all error metrics. This result is expected, since the Constant Delay

model is designed to return the mean delay, naturally optimizing for the Mean Squared

Error metric given a network traffic trace. It is, however, interesting to note that the other

models, especially the Latency-Rate model, are often not far behind the Constant Delay

model. All models are able to achieve a Mean Squared Error in the order of 10,000 ns2

on both data sets, which, depending on the use case may be accurate enough for DSE
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of dCPS. However, the difference between the MSE a model has achieved on the test set

and the best MSE that model could have gotten in the test set, shown in the "Difference"

column in Table 7.2, paints a different picture of how sensitive the models are to unseen

data. While the Constant Delay model boasts strong accuracy metrics, it overfits massively

to the training dataset, resulting in poor generalization. This is inherent to the model, it is

very sensitive to being trained on a different data set because it takes on the shape of the

data set. The Constant Bandwidth model generalizes slightly better than the Constant

Delay model by taking message size into account. However, the Latency-Rate model shows

the best generalization by far due to its dual parameter setup, which prevents overfitting

more effectively than the single-parameter models.

Finally, the usefulness of a model is assessed by its ability to handle the core DSE ac-

tivities of: (1) altering network bandwidth, (2) altering network latency, (3) altering both

bandwidth and latency simultaneously, or (4) altering neither. The Constant Bandwidth

model works best in cases altering only the bandwidth, while the Constant Delay model

works best for cases in which latency is altered. The Latency-Rate model, due to its dual

parameters, can handle changes in both bandwidth and latency separately or simultane-

ously. Case 4 considers DSE without altering the network at all. This might be true when

optimizing the workload or computational resources of the dCPS, using the network model

within a greater dCPS model. All models discussed in this thesis satisfy this use case.

Given these considerations, one might conclude that the Latency-Rate model is the most

applicable for DSE of dCPS. Out of the four evaluated models it is one of the fastest, one

of the most accurate, and one of the most generally useful. It appears to be right in

the sweet spot of suitability. However, even though the statistical models like Constant

Delay, Constant Bandwidth, and Latency-Rate perform well with tuned parameters, they

become ineffective without traces to optimize against. Without tuning their parameters,

the calculations they perform are completely random and meaningless. The INET model

is the only model evaluated in this study that directly incorporates topology information

into its calculations, simulating the topology node-by-node without needing a parameter

tuning phase. This is evident as the INET model achieved comparable MSE scores to

the tuned statistical models. Tuning statistical models based solely on network topology

properties is challenging, reinforcing the INET model’s utility for DSE of dCPS.

It seems that no single model satisfies all measures of applicability confidently. Therefore,

this thesis proposes a dual-step modeling approach, in which different models are leveraged

for their respective strengths. In our evaluation, the INET model matches in accuracy

metrics with the analytical models, without the need for parameter tuning. Therefore, one
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could assume that the INET model, despite its slowness, could generate delay traces for

unknown network topologies that are somewhat accurate to what real network traffic would

look like in that topology. The INET model could create a trace based on a sample of the

total data, which can then be used to tune the Latency-Rate model, which, although fast

and accurate post-tuning, is otherwise inaccurate and thus not useful. This tuned Latency-

Rate model is then used for the full simulation. The Latency-Rate model was chosen

for this approach over the Constant Delay and Constant Bandwidth models, because it

achieves similar accuracy and speed metrics as these models, but achieves all four use-

cases of usefulness for DSE of dCPS, which the others don’t. This dual-step approach of

calibrating one model based on data generated by another model harnesses both models’

strengths and mitigates their weaknesses. Future work should explore the feasibility and

effectiveness of the opportunity that is this combined approach.

That being said, a major limitation of this thesis were the challenges posed in the col-

lection of real-world dCPS networking data. We were only able to collect data of one case

study. This severely limits the scope of the accuracy experiment. A large evaluation with

more real-world networking traffic would allow for examining in which (edge) cases one

model may be more accurate than another. Furthermore, of this single case study, data

collection was limited to just two out of many hosts available in the modeled subnet, as

shown in Figure 7.2. This means that we were not able to capture all interfering traffic in

the main switch, only the traffic between the two hosts that allowed us to run our tracing

software on. For the INET framework to be accurate, it needs detailed information about

all other traffic flows in the system as well. Otherwise, it cannot compute the contention.

If this information is not available, like in our experiment, then the contention needs to

be limited in the system for the model to be accurate. Therefore, one could state that the

INET model in our experiment was accurate by accident, and that, given a network trace

with different network utilization characteristics, the INET framework could produce far

less accurate results. Future work should investigate how the INET framework performs

in network environments with differing utilization and congestion characteristics.

43



8. DISCUSSION

44



9

Conclusions and Future Work

This thesis investigated the creation and validation of network delay models for the use

of Design Space Exploration (DSE) for Distributed Cyber-Physical Systems (dCPS). The

primary objective was to compare network delay models to strike a balance between accu-

racy compared to real-world systems, simulation speed, and general usefulness for DSE of

dCPS. The research contributions are threefold: the formalization of network topology and

traffic concepts, a proposal of four network delay models at different levels of abstraction,

and the comprehensive experimental evaluation of these models.

9.1 Summary of Contributions

First, the formalization of network topology and traffic concepts laid the ground-

work for representing and generating networking data by defining their key components.

We developed an open-source data framework and CLI application called GeNSim to rep-

resent and generate networking data systematically. GeNSim provides standardized rep-

resentations for network topologies and traffic patterns, supporting both real-world and

synthetic data. It is also able to convert data between the supported representations, val-

idating the data to confirm it is formatted according to the specification, and generating

synthetic network topologies and traffic data that can be used to test the proposed models.

Second, leveraging the established framework, four network delay models were pro-

posed, each operating at a different level of abstraction. The Constant Delay model rep-

resents the most abstract form, providing a fixed delay for all messages, capturing the

average network latency. The Constant Bandwidth model improves on this by considering

the size of the messages, as well as a bandwidth parameter in calculating the message delay.

The Latency-Rate model introduces a dual-parameter system based on the Latency-Rate
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server abstraction, potentially offering greater flexibility to model the target system with

greater accuracy. Finally, the INET model simulates the entire network in detail using the

INET framework within OMNeT++, considering each node and interaction individually

with high fidelity.

Third, the experimental evaluation involved a twofold approach: validating the mod-

els’ accuracy using real-world data from an industrial case study, and assessing the simu-

lation speed and scalability using synthetic data. The accuracy assessment was conducted

using networking data from an ASML TwinScan Test Bench machine. We tuned the pa-

rameters of the analytical models using a training dataset and validated their performance

on a separate testing dataset. The speed assessment was conducted by employing synthetic

network topology and traffic data generated using GeNSim. We analyzed how the models

scale with increasing network complexity and traffic volume.

The results of these evaluations revealed some key insights. The Constant Delay and

Latency-Rate models achieved the best accuracy in terms of mean squared error (MSE)

when their parameters were tuned using real-world data. The Latency-Rate Model, with its

dual parameters, offered better generalization on unseen data compared to single-parameter

models. However, without parameter tuning, all analytical models’ accuracy significantly

diminishes, limiting their practical applicability in DSE where prior data may not be

available. The INET model showed comparable accuracy to the tuned analytical models

without the need for a parameter tuning phase.

In terms of simulation speed, the analytical models significantly outperformed the INET

Model. The analytical models demonstrated linear scalability with respect to traffic volume

and were unaffected by increases in network complexity due to their high level of abstrac-

tion. Conversely, the INET Model exhibited much longer simulation times and poorer

scalability due to the computational overhead of its detailed simulation of network com-

ponents. This may render the INET model impractical for DSE of dCPS, where numerous

design points must be evaluated efficiently.

The network delay models were evaluated based on their ability to support the core

DSE activities of altering network bandwidth, network latency, both, or none. The INET

model directly simulates the network topology, making it the most useful of all models

with respect to the aforementioned DSE activities. The Latency-Rate model was the most

versatile analytical model, capable of independently adjusting latency and rate parameters

to reflect changes in the network. The Constant Delay and Constant Bandwidth models

were limited to single-parameter adjustments.
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9.2 Conclusions

Given these findings, this thesis concludes that no single model fully satisfies all three key

measures of accuracy, speed, and usefulness for DSE of dCPS simultaneously, demonstrat-

ing the presence of a tradeoff. The INET model, while accurate without parameter tuning,

is computationally intensive and scales poorly, making it unsuitable for rapid exploration of

large design spaces. The analytical models are computationally efficient and, when tuned,

can achieve relatively good accuracy. However, their reliance on parameter tuning based

on specific datasets limits their applicability in scenarios where prior data is unavailable.

To address these limitations, a novel dual-step modeling approach was proposed, which

leverages the INET model to generate synthetic network delay traces on an unseen topol-

ogy, which are then used to tune the Latency-Rate model for efficient and accurate full

simulation runs. This approach leverages the strengths of both models and mitigates their

weaknesses.

9.3 Future Work

Future work should further refine the proposed dual-step modeling approach, exploring

its practical application in real-world DSE scenarios. Besides that, additional research is

needed to validate the effectiveness of the dual-step modeling approach in practical DSE

settings:

• Extension to diverse network configurations: Future studies should evaluate

the models across a wider range of network topologies and traffic patterns, including

those with varying levels of congestion and variability. This would provide a more

comprehensive understanding of the models’ accuracy and generalization capabilities.

• Automated parameter tuning: Developing automated methods for parameter

tuning of analytical models, possibly using machine learning techniques, could en-

hance their applicability in DSE without relying on prior data.

• Integration with a workload model: Integrating the proposed models into a

dCPS workload model would facilitate their adoption in industrial DSE settings.
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