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“Motivation is not enough, discipline, grit, perseverance, and consistency are needed.
Always show up.”

from unknown,
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Abstract

Energy consumption in the realm of ICT is raising concerns, challenging the

prospect of achieving net-zero emissions for the field. ICT solutions are often

seen as efficient and low-cost, yet their impacts leave notable footprints behind.

The high demand for digital services, such as online shopping, is contributing to

the increased energy consumption of digital infrastructure. Energy consump-

tion in the digital domain is mostly attributed to the hardware and software

capabilities and that of the infrastructure itself, while users and how their be-

havior influences this consumption are highly overlooked. However, as users

are those interacting with and driving these services, it is users’ behavior and

usage patterns that directly translate to the energy used by both the software

and the hardware components.

In this context, we research the impact of user behavior on the energy con-

sumption of digital services in the computing continuum, as effective and ef-

ficient technology alone might not provide sufficient change in achieving the

desired net-zero emissions. To explore the impact of user behavior on the en-

ergy consumption of digital services, we use online shopping as a case study.

The objective is to understand how diverse user interactions within the online

shopping domain influence client-side and server-side energy usage. To this end,

we deployed a mixed research methodology, combining theoretical and empiri-

cal analysis, and found significant differences in the energy impact of different

users’ actions on the server-side. However, isolating the specific impact of user

behavior is difficult to implement on the client-side. Overall, our results show

that product browsing is the user action with the highest impact on energy.

Based on the insights from our research, we also propose a model that can

estimate the energy impact due to users’ behavioral patterns on the server-side.

As such, our research contributes to achieving a sustainable digital ecosystem

for digital services, which is a collective responsibility where users are at the

center of the technology.
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1

Introduction

Our society is increasingly digital, marked by inter-connectivity and technological advance-

ment. Its sustainability, however, is a concern. We expect the society will require users

to be mindful about their digital services consumption, the increase in digital-services

demand leads to an unsustainable rise in the energy consumption within the computing

continuum, i.e. compute resources that cut across the cloud data center, edge computing

systems, and end devices (3). Given the complexity of this digital age, where all our actions

carry environmental implications, it becomes necessary to address the reality of our collec-

tive impact. But understanding this collective impact requires transparency, to effectively

inform consumers about the implications of their actions on the energy consumption of

digital infrastructure.

To achieve the much-talked-about net zero CO2 emission (17), (46), service users might

even need to review their habits. Since the final decisions on which service to consume and

how to interact lie with the users, their behaviors and decisions are likely to determine the

industry’s impact.

1.1 Problem Statement

The surge in digital services has led to extensive research into their environmental conse-

quences, particularly concerning the energy consumption of electronic communication net-

works, devices, data centers, and ICT, as highlighted in the work of Preist et al 2014 (34),

Li et al 2018 (28), Guegan et al 2019 (21), Ahvar et al 2019 (2), Ramboll et al 2023 (18)

and Kamiya et al 2024, (27). Acrep 2020 (5) emphasized the importance of measuring

energy consumption accurately, as accurate measurement serves as the initial step towards

reduction. In 2024, International Energy Agency (IEA) (26) investigated the magnitude of
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1. INTRODUCTION

energy consumption associated with digital technology, and reported an estimated rise in

global electricity to 3.4% expected annual growth through 2026, and the global data center

is estimated to reach 1000 TWh by 2026 (equivalent to Japan’s yearly energy consump-

tion). This accelerated rise in energy consumption can be attributed to the proliferation

of digital services, and other data-intensive applications. These digital services rely on

energy-intensive infrastructure to support their operations. Within this context, online

shopping may emerge as a key driver of energy demand, since its operations span all the

components of the computing ecosystem.

Despite the ubiquity of digital services and their profound impact on daily life, a gap

exists in understanding how users behavior influences energy demand in the computing

continuum. Different digital services have emerged over the years, with an estimation of at

least 9 connected devices per person by 2025, as indicated by Safaei et al. (38). Each time

these digital services are accessed, a series of processes and infrastructure components are

triggered behind the scenes, from the data-center servers to the end-user devices. Each

step of the process consumes energy. As the number of digital services increases, so does

the number of users accessing these services: both these factors contribute to a visible

increase in the overall energy consumption.

As users navigate this digital landscape, their behaviors play a vital role in shaping the

trajectory of energy consumption and environmental impacts.

The COVID-19 pandemic catalyzed a shift in consumer behaviors, with online shopping

experiencing unprecedented growth during the lockdown and social distancing era, com-

pelling individuals to embrace e-commerce platforms Arcep, 2021 (1). While this digital

migration offers convenience and accessibility, it also amplifies concerns regarding energy

consumption and carbon emissions associated with digital transactions.

In the landscape of online shopping, where convenience converges with consumerism,

sustainability implications loom. Research by McKinsey, 2021 (29)highlights the expo-

nential growth of e-commerce, with global online sales soaring to $4.28 trillion in 2020,

representing a 28% increase from the previous year, while "Statistica" 2024 (41) estimated

global retail e-commerce sales to exceed 6.3 trillion U.S. dollars, with a projected 39% in-

crease within the coming years. The surge in digital transactions underscores the profound

influence of user behaviors on energy consumption and environmental footprint.

Collective action and systemic change are needed to realize the full potential of digi-

tal innovations in fostering sustainability. The United Nations Sustainable Development

Solutions Network emphasizes the need for cross-sector collaboration and policy interven-

tions to motivate sustainable practices across the digital ecosystem UN SDSN, 2022 (37).
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1.2 Objectives of the Study

While, European Commission, 2023 (16) proposed digital literacy to empower users in

making informed choices and advocating for environmentally responsible solutions.

1.2 Objectives of the Study

Motivated by the need to address the sustainability of the ICT sector, this study aims to

determine how user behaviors and interactions affect energy consumption within the dig-

ital infrastructure in the context of digital services. Using online shopping as an example

of a digital service, deployed within the computing continuum, we aim to analyze the rela-

tionship between users’ behavior and energy impact, identify opportunities for optimizing

energy use, reducing carbon emissions, and fostering sustainable digital practices. We in-

tend to achieve these objectives through theoretical and empirical research, and data-driven

analysis.

Specifically, to understand the relationship between online shopping user behavior and

the energy consumption of online shopping, we formulate the following research questions:

RQ1: What are the existing methodologies for measuring the end-to-end energy con-

sumption of digital services across the computing continuum?

To answer this question, we first identify feasible ways to measure digital services energy

consumption across the continuum. Furthermore, we analyse and briefly compare the most

relevant options, and select the methods/tools to be used further in this project.

RQ2: Does the energy consumption of digital services vary across the different compo-

nents of the computing continuum?

To answer this question, we propose an empirical study to assess which layer of the con-

tinuum has the highest impact on energy within the context of online shopping. Identifying

the layers with the highest impact will help us to direct optimization strategies to reduce

this impact.

RQ3: To what extent does the user’s behavior impact energy usage in online shopping?

In answering the question, we use our case study to measure the energy impact associated

with online shopping behavior. We define "shopping behavior" based on basic shopping

operations, such as browsing or adding/removing items to/from the cart. We formulate

3 sub-questions to gain insight into the energy impact of these primitive actions, which

allowed us to trace interaction areas with high-energy impact.

• To what extent does browsing product pages impact energy usage?

3



1. INTRODUCTION

• To what extent do cart updates impact energy usage?

• To what extent does product filtering impact energy usage?

RQ4: What are the environmental impacts of online shopping?

These research questions will guide us in understanding the environmental impact left

behind by online shoppers. The insights from these questions will aid us in educating

digital service users of their impacts, and to inform the developers of digital services of

possible areas of optimization.

1.3 Significance of the Study

The significance of this research lies in the limited attention given to user behaviors and

their implication on the energy consumption of the digital infrastructure. While stud-

ies have explored the impact of user behaviors in the context of smart housing such as

Maghsoudi et al, 2022, Huckebrink et al, 2023, (25), (30), there remains a notable gap in

understanding how user behaviors shape energy demand across the computing continuum.

This research will provide insights into how user behaviors in the online shopping envi-

ronment influence energy consumption in the computing continuum. The insight gained

from this research will educate users, and help developers to optimize the energy utilized

by online shopping platforms. We believe that by understanding which of the user’s in-

teractions impacts energy more, developers can design or redesign applications to reduce

energy associated with such interactions thus fostering digital sustainability.

1.4 Organization of Study

The remainder of this thesis is structured into chapters as follows: In Chapter 1, we

set the motion and give context on the importance of this research. In Chapter 2, we

reviewed existing literature on energy consumption in the computing continuum, digital

services energy consumption, and the influence of user behaviors on energy consumption. In

Chapter 3, we give insight into understanding the energy consumption of Online shopping,

the experimental design, and the research hypothesis are discussed. In Chapter 4, we

discussed the energy impact associated with the client side, the challenges in measuring

this impact, and the insights gained from the analysis. In Chapter 5, we discussed the

server-side energy impact. In Chapter 6, we provide an overview of the energy impact

associated with user behavior on both the client and the server-side, the insights from the
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research and their implications to stakeholders are discussed. In Chapter 7, we conclude

our research by highlighting the findings, contributions, limitations, and propose direction

for future work.
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2

Related Work

This literature review explores existing research related to energy consumption in the

computing continuum, energy consumption of digital services, and the influence of user

behaviors on energy consumption, seeking to identify research gaps and propose the con-

tributions of this empirical research to the existing body of knowledge.

2.1 Energy Consumption in the Continuum

Here, we review research papers on energy consumption in the computing continuum relat-

ing to the cloud, the edge, and the user’s device. Each layer of the computing continuum

consumes energy and contributes to the carbon footprint of digital services. Cloud data

centers consume vast amounts of energy due to the high demand for fast data process-

ing and storage needs. Existing studies have shown efforts made to improve their energy

efficiency, from server utilization optimization, and renewable energy usage to advanced

cooling technologies. Research by Beloglazov et al., 2012 (8) extensively examined en-

ergy consumption across the cloud layer including potential optimization strategies. Their

research identifies that high performance and fulfillment of service level agreements have

been the sole aim of data centers. This service level agreement has mostly been fulfilled

without considering its impact on energy consumption. While noting the rise in energy

cost due to fulfilling the high-performance agreement and the decline in energy availability

they proposed a shift in optimizing the data center for high performance to optimizing for

energy efficiency. This shift shows the salient need to understand the energy consumption

of this infrastructure. Aldossary 2021 (4) identifies the energy overhead associated with

resource provisioning in cloud data centers. They propose predictive resource management

techniques that leverage dynamic resource allocation to reduce the energy expense by these
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2.1 Energy Consumption in the Continuum

infrastructures. However, these studies often focus on a specific component of the comput-

ing continuum overlooking the end-to-end energy consumption in the continuum. While,

Orgerie 2019 (21) research on end-to-end energy consumption of the Internet of Things

(IoT) devices, noted that IoT devices do not consume a significant amount of energy on

their own, which implies that their impact on the continuum of energy consumption may

not be significant. However, their impact on continuum energy consumption lies at the

intersection of their pervasiveness and the infrastructures they utilize to function. Simi-

lar, to the work done by Orgerie (21) on estimating the end-to-end energy consumption

of low-bandwidth IoT applications, our research focuses on the end-to-end energy con-

sumption of digital services with a special focus on the online shopping domain. We aim

to analyze how digital services energy consumption impacts the computing continuum in

the context of online shopping while accounting for the impact of user behavior on this

consumption. Baneshi et al 2024 (7), analyzed per-application energy consumption in a

multi-application in edge/cloud layer, proposing iFogSim a simulation technique for fine-

grained characterization of application energy, noting that this characterization can help

in device selection and placement policies thus reducing latency and improving energy ef-

ficiency. They approached energy consumption from the system level, resource allocation,

and application mapping perspective. The research underscores the importance of tracking

communication energy consumption. While our research focuses on end-user devices and

server-side energy, seeking to understand how user behavior impacts energy consumption,

their research provides a template for tracking end-to-end energy consumption at various

granularity through different resource allocation, and application mapping techniques.

Studies have shown that edge computing reduces latency and energy consumption by

processing data closer to the source. Research by Shi et al. 2016 (40) and Li et al.

2018(28) shows the energy savings capabilities of edge computing in terms of reduced

data transmission rate. Pérez et al. 2021 (33) and Xu et al. 2017 (47) have researched

optimization strategies for energy-efficient edge computing. Notably, research on how user

behavior impacts energy usage is missing in all the existing work.

At the user device layer, a medium via which digital services are being accessed is

known to consume a significant amount of energy, contributing to the carbon footprint

of this ecosystem. Priest et al. 2014 (34), and Roth et al. 2017 (35), in their research

on the energy consumption of consumer electronics found that end-user’s devices take up

a greater portion of household energy use. This discovery highlights the need for energy

efficiency behavior and increased user awareness. While analyzing energy consumption

in mobile devices, Carroll and Heiser 2010 (11) and Preist et al. 2014 (34), recommend
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2. RELATED WORK

energy-efficient hardware design as a technique for reducing the energy consumption of

these devices. Whereas, Cuervo et al. 2010 (12) and Ullah et al. 2019 (43), discussed the

use of effective application off-loading techniques as a means of saving energy in end-user’s

devices. Aside, from optimizing hardware and effective offloading techniques, there is a

need to understand how user behavior impacts the energy usage of these devices. This

behavioral impact is what we intend to understand in the cause of this research.

2.2 End-to-end Energy Measurement in the Computing Con-
tinuum

In this section we review work that attempts end-to-end energy measurement in the com-

puting continuum, as well as identifying challenges faced by this studies.

End-to-end energy measurement tracks energy usage from user devices and the network

infrastructure to the servers. This measurement provides an overview of the energy impact

across the continuum. However, this is not a simple endeavor as many interconnected

devices with different hardware and software specifications interact in the continuum during

operation.

Research by Hinton et al.2011 (24) and Baliga et al. 2010 (6) states the importance of

considering the entire service delivery chain in energy assessments. However, Wohlin et

al., 2006 (45); Tiwari et al. 2020 (42)noted that measuring energy consumption across the

computing continuum is challenging due to hardware and software variability. Supporting

this notion, Cardoso 2020 noted that (10), quantifying the energy use of digital services like

a video game is a tremendous challenge because of the involvement of different heteroge-

neous platforms and heavy dependence on user behavior. Preist 2014 (34), in their research

on Guardian news and media, analyzes the end-to-end energy consumption of this media

while deploying the life cycle assessment (LCA) methodology. They identified the three

factors associated with digital service energy consumption: servers, network transport,

and end-user devices. They noted that deploying LCA methodology to analyze the energy

consumption of digital services requires knowing how much energy each component uses.

Acknowledging that several components such as the architecture, the target device, and

the individual user interaction pattern can complicate this measurement. This research

was done in the context of a news delivery network. Similar to their research, we will

empirically analyze the end-to-end energy consumption of digital services in the context

of online shopping due to the vast amount of these services springing up. Li 2017 (28)

explores energy models for edge cloud-based IoT platforms, they deployed the simulation

8



2.3 User behavior and Energy Consumption

and empirical methodology, and the mathematical model was applied to data streaming

analysis from a vehicle camera. The energy data was collated from the device, network,

and cloud layers. Although this work is not within the premise of digital services, they

showed that arriving at a single metric for end-to-end energy measurement in the comput-

ing continuum is challenging due to the heterogeneity of devices at each layer. As such

the total energy consumption within the computing continuum can be determined as the

sum of all energy consumption at each layer of the continuum. The summation of this

energy consumption data at each layer of the continuum will give us an insight into the

total consumption across the continuum. Orgerie 2022 (2), offers a comparative analysis of

energy consumption across cloud, fog, and edge infrastructures, they introduced a model

to assess the energy impact of different cloud edge architectures. While our work does not

consider architectural design, the research shows that different architectural patterns have

varying degrees of impact on energy consumption.

Existing studies have given valuable insights into energy usage in the continuum, strate-

gies for optimization, and how architectural design can have varying impacts on energy

consumption in the continuum. However, existing research does not investigate nor offer

insight into the impact of user behaviors on energy consumption in the continuum. Our

research aims to fill this gap by specifically analyzing how user behaviors influence en-

ergy consumption in the computing continuum, thus providing a detailed understanding of

energy-efficient behaviors at the user and developer level that can contribute to minimizing

digital service energy use.

2.3 User behavior and Energy Consumption

Existing research by Rusek 2022 (36) and Heikkinen 2012 (23) highlights the importance

of user behaviors in designing energy-efficient digital services, noting that to understand

how energy is consumed the user behaviors and activities need to be understood. Schein

et al. 2013 (39) and Darby 2009 (13), while emphasizing the significant impact of user

behaviors on energy consumption in resource-intensive applications like video streaming,

noted that educating users and providing real-time feedback can lead to more energy-

conscious behaviors. Visscher et al 2022 (30)while exploring how occupant behaviors affect

the effectiveness of energy efficiency in retrofitting projects, offer insights into designing

user-centric energy efficiency strategies as an option for reducing energy use. Although

Dost et al.2017 (15) and Guo et al. 2012 (22), have explored energy consumption in e-

commerce, their focus is primarily on data centers and the commercial sector. However,

9



2. RELATED WORK

Figure 2.1: Research Venn diagram
The positioning of our research is shown in the diagram, which depicts the interaction between users’

behavior and their impact on the energy impact of digital services. This Venn diagram shows that user
behavior influences both client and server-side energy use. The interaction shows that user behavior has

the potential to contribute to energy efficiency.

we acknowledge the research by Bertsch et al. 2023 (25) which investigates the influence of

user behaviors on emissions and costs in residential energy systems, highlighting significant

energy savings through simple behavioral changes. This research set the precedence on the

potential gain associated with behavioral patterns as it relates to energy consumption.

Also, Gram-Hanssen 2012 (20), debates the importance of efficient technologies versus

user behaviors in reducing household energy consumption, highlighting the dual focus on

technological solutions and user behaviors for optimizing energy efficiency, stating that

even with optimized strategies without the users making a conscious effort to save energy

the gains may not be visible. This literature underscores the potential for behavioral

interventions in enhancing energy efficiency.

While existing studies predominantly focus on video streaming services, proposing tech-

niques for optimizing server-side and device energy usage. Often neglected are the potential

implications of user behavior on overall energy use in the continuum.

Despite acknowledging the importance of user behaviors, there is limited research and

analysis of specific user behaviors in online shopping and their impact on energy consump-

tion in the computing continuum. The only research that considered user behavior was by

Preist 2014 (34), they used a parameterized model for measurement which is not disclosed
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2.4 Environmental Impact of Digital Services

making it difficult to validate. This study addresses this gap in the existing literature

by providing a detailed analysis of user behaviors specific to online shopping, by isolating

these behaviors and analyzing their energy impact.

Based on the knowledge gained during the analysis, we will offer insights into how user

interactions influence energy usage. We will recommend sustainable behaviors that will

enhance the efficient use of energy in the continuum.

2.4 Environmental Impact of Digital Services

The environmental impact of digital services is a significant concern. The Carbon Trust

highlights the substantial energy consumption and environmental impact associated with

digital activities. This emphasizes the need to optimize energy consumption across the com-

puting continuum to reduce the overall environmental footprint. While Williams 2011 (44),

assessed the substantial carbon footprint of ICT activities, Schien et al. 2013 (39) mod-

eled energy consumption variability during the use of online multimedia services. Dost

and Maier 2018 (15) identified significant environmental impacts from increased digital

transactions in their multi-year assessment of e-commerce. Despite research on energy

consumption and user behaviors, there is a critical gap in understanding how specific user

behaviors in online shopping influence energy consumption and sustainability outcomes.

Existing studies have focused largely on infrastructural solutions, often overlooking the

nuanced ways in which user behaviors can affect energy consumption. We aim to fill this

gap by investigating the influence of user behaviors on energy consumption in the online

shopping domain.

2.5 Online Shopping and Users Behaviors

Lund et al.2021 (29) discuss shifts in consumer behaviors following the COVID-19 pan-

demic, noting an increased reliance on online shopping and digital services. This trend has

significant implications for energy consumption due to greater dependence on data cen-

ters, broadband networks as well as end-user device energy consumption. Dost and Maier

2018 (15) conduct a multi-year assessment of e-commerce effects on energy consumption,

highlighting significant environmental impacts from increased digital transactions. They

emphasize the importance of developing sustainable e-commerce practices to balance the

benefits of online shopping with a focus on reducing energy consumption and environmen-

tal impact. By examining behavioral patterns and their direct impact on digital energy
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use, this research will provide insights into how specific shopping behaviors impact energy

usage. The insight gained will aid in developing targeted strategies to promote sustainable

online shopping practices.
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3

Understanding Online shopping
Energy Consumption.

In this chapter, we provide detailed insight into the process of measuring the energy con-

sumption due to online shopping, the tools, data collection process, and subject selection

procedure are well-detailed herein.

3.1 Experiment Definition

This research aims to analyze how user behavior impacts the energy consumption and car-

bon footprint of digital services in the computing continuum from the perspective of a user,

software developer, and business owner within the context of online shopping services. We

used the goal, question, and metrics (GQM) proposed by Rombach 1994 (9), a framework

used to establish a well-structured experimental setup. Guided by the GQM model we

formulated four research questions to investigate the methodologies for measuring digital

services energy consumption across the computing continuum. The impact of user’s behav-

ior on digital service energy consumption within the computing continuum in the context

of online shopping, and the carbon footprint associated with these behaviors. Based on

this framework the tone of this research was set and the research questions formulated.

3.2 Experiment Planning

3.2.1 Energy Monitoring Tools

To manage the energy consumption of digital services, we need to know and understand

the consumption pattern. To gain this understanding energy measurement and monitoring

13
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CONSUMPTION.

Figure 3.1: Visual description of GQM framework
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3.2 Experiment Planning

Table 3.1: The goal, quality metrics framework

Goal, Quality, Metrics framework
Analyze the impact of user behavior on

online shopping
For the purpose Evaluating
with respect to energy consumption and car-

bon footprint in the online
shopping domain

from the perspective of a user, software developer,
and policy maker

in the context of online shopping in the com-
puting continuum

Table 3.1 describes the GQM framework, within the context of the user’s behaviors impact on the com-
puting continuum energy usage.

tools are required. These tools can be characterized by the environment they run on,

software or hardware, the granularity of data they report, and the operating system they

require to function. They are often limited by hardware and operating system requirements.

When it comes to tools for measuring energy impact in the computing domain, there is

no one-size-fits-all tool. When choosing a tool for measuring and monitoring the energy

usage of any application or software system, consideration should be given to the operating

system and the level of energy detail needed.

The tools used to monitor and measure the energy consumption of digital infrastructures

are the key factors that determine energy consumption. They must provide data that are

both accurate and repeatable. Accuracy and repeatability are necessary to validate energy

consumption.

Based on our systematic study we highlight the following as the requirements of a good

tool for measuring energy consumption in the ICT domain. The tool should ensure the

precision of energy usage measurements across various system components, from the CPUs,

GPUs, Network, and memory to the peripherals. The equipment should be calibrated cor-

rectly, with a detailed document specifying the calibration methods, tolerance level, and

sampling frequency. A clear and concise documentation should be available to the users.

This ensures that energy consumption data is valid and reliable, allowing for effective ver-

ification and understanding of energy consumption patterns. The energy cost associated

with such tools should be minimal, as any overhead cost can impact the system’s perfor-

mance. Current energy measurement and monitoring tools are mostly platform-dependent.
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A versatile tool that can effectively measure energy consumption data without hardware or

operating system compatibility issues will generally be considered a good tool if the energy

consumption data are accurate and verifiable. Also, these tools should allow for instrumen-

tation, such that users can tune their parameters such as sampling intervals to suit their

needs. PowerMetrics, a tool designed for macOS, exemplifies many of these requirements.

It offers energy impact measurements at the level of granularity of interest that suits our

experiment. Although, the energy impact reported is a composite score without a unit. It

gives a detailed insight into how each process and service impacts energy usage.

3.2.2 Subject Selection

To effectively assess the energy impact of online shopping behaviors on the energy con-

sumption of the computing continuum, we chose the Microsoft “eShopOnContainers” (32),

a microservice reference architecture application. The application allows each component

to be deployed as a separate service in the same container. The application represents a

real-world use case of a typical online shop, with a wide range of features. The function-

alities implemented by this application allow us to measure the primitive energy impact

associated with specific shopping activities. The choice of this application was based on

the versatility of the features implemented by the application. These features allowed us

to uniquely measure the desired behaviors of the users while interacting with the applica-

tion. The ability to monitor independent service energy consumption helps us to analyze

how specific primitive users’ shopping behavior impacts energy consumption. Also, the

“eShopOncontainers” application is designed to handle varying levels of workloads making

it easy for us to simulate different user behaviors and load patterns while measuring their

impact on energy consumption. We deployed powermetrics (31) as the monitoring tool

because it allows us to read the energy impact value at the process level. This choice

was due to the compatibility with our experimental environment. With powermetrics we

can confidently see the energy impact associated with the service we interact with in the

online shop. Although, powermetrics provides performance indices at different granularity,

the tool is limited to MacOS and the energy impact data reported is unit-less making it

difficult to generalize insight from this measurement.

3.2.3 Experimental Variables

In answering the proposed research questions, we consider the energy impact associated

with user behaviors as the dependent variable. The independent variables are the user
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3.3 Experimental Hypothesis

interaction and time. The energy impact associated with the user’s behaviors is mea-

sured while interacting with the application. The energy impact data obtained during

this interaction serves the objective energy used during the online shopping sessions. This

measurement is taken for each primitive shopping task the users perform. The primitive

behaviors of interest in this research are cart updates, product browsing, and filtering of

product catalogs. For the energy impact associated with server-side consumption, we de-

fine energy impact as the energy consumed by each of the processes/services that the user

interacts with, while on the client-side energy impact is the function of the browser energy

consumption plus the user activity.

3.3 Experimental Hypothesis

For research questions 1 and 4 due to the nature of the question we will theoretically

assess and answer these questions as such no hypothesis is formulated for it. However, this

question will be analyzed based on the insights of our systematic study.

To answer the research questions 2 and 3, the following hypotheses are formulated:

RQ2:

• H0: There is no variation in the energy consumption of digital services across the

different components of the computing continuum.

• H1: The energy consumption of digital services varies across the different components

of the computing continuum.

RQ3.1:

• H0: Browsing product pages does not impact the energy consumption of the com-

puting continuum.

• H1: Browsing product pages has an impact on the energy consumption of the com-

puting continuum.

RQ3.2

• H0: Updating shopping carts has no impact on the energy consumption of the con-

tinuum.

• H1: Updating the shopping cart has an impact on the energy consumption of the

computing continuum.
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RQ3.3

• H0 Product search and filtering do not impact the continuum energy consumption.

• H1: Product search and filtering have an impact on energy consumption in the

continuum.

These research hypotheses guided us to empirically analyze the extent to which user

interaction impacts the energy usage of the computing continuum. Through the insight

gained from hypothesis testing, we can adequately advise users, developers, and business

owners on the energy impact associated with different primitive shopping behaviors.

3.4 Experimental Design

To access the variability in user’s behaviors impact on energy consumption in the comput-

ing continuum. We chose three primitive actions based on the most frequent tasks per-

formed by online shoppers: product browsing, cart updates, and product filtering. Each

of these actions was isolated on the server side and their energy impact was measured.

The execution duration for each experiment was set to five minutes, with a cooling

time of 1 minute. The cooling time helps in reducing confound effects due to the thermal

heat and environmental state of the device. The experiment is repeated 10 times for

each behavior measured. This allows us to gain some level of statistical significance. The

experimental subject and use case of this experiment reflect a real-world usage scenario.

The experimental combination is outlined in Table 3.2.

3.5 Experiment Setup

The experiment environment was set up on a Macbook Pro, 14-inch 2021. The specifica-

tion of the experimental devices is shown in Table 3.3. The experiment subject is installed

and hosted locally on the experiment device. The experiment subject was cloned from the

official GitHub repository. It is worth noting that the eShopOncontainer requires docker

installation for a seamless run. Interaction with the front end of the application was per-

formed manually. However, this can also be done using GUI interaction tools, we could

not explore this option due to limited time. For interaction with the back end of the appli-

cation, we used a Python script utilizing Locust.io (Locust.io) to simulate workload and

different numbers of users to measure the energy impact of varying workloads and different

numbers of users on the energy consumption of the computing energy consumption.

18



3.5 Experiment Setup

Table 3.2: Shopping behavior and the combination of users tested

shopping behavior Number of users Duration(mins)
Browsing 1 5
Browsing 5 5
Browsing 10 5
Browsing 100 5
Browsing 300 5
Browsing 600 5
Browsing 1000 5

cart updates 1 5
cart updates 5 5
cart updates 10 5
cart updates 100 5
carts updates 300 5
carts updates 600 5
carts updates 1000 5

product filtering 1 5
product filtering 5 5
product filtering 10 5
product filtering 100 5
product filtering 300 5
product filtering 600 5
product filtering 1000 5

Table 3.3: Technical specification of the experimental device

System Specification
Parameters Specification
Chip Apple M1 pro
Memory 32GB
Display 14 inch (3024 *1964)
OS macOS Sonoma 14.5
Flash storage 994,66 GB
No. of cores 10 (8 performance and 2 effi-

ciency
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3.6 Experiment Preparation

To assess the feasibility and accuracy of the experiment, we pre-tested the application

with different workloads and usage scenarios, as well as on different browser engines. This

preliminary test helped us identify whether all behaviors of interest were captured by the

application. During this test, we identified the most energy-efficient browser engine for the

"eShopOnContainer" application, to be Safari. To clarify whether this browser’s energy

efficiency was application and activity-dependent, we assessed three other sites: the CNN

news site, live sports scores, and YouTube, all performing the same task. We discovered

that Safari and Google Chrome were more energy-efficient in all cases than Firefox. Based

on the results of the preliminary test, we chose the Safari browser as the web engine for

interacting with the client-side of the web application. We concluded on this because the

client-side energy consumption is a function of the browser’s energy usage and interaction

performed by the users. Since "PowerMetrics" reports energy consumption per process, we

did not account for any system processes. However, we ensured that only the terminal and

the experimental subjects were active while taking the measurement. This precautionary

measure guarantees that the device operates solely within a controlled environment dedi-

cated to the experiment. When considering the server-side energy consumption, we ensured

that "locust.io", which simulates the workload, did not contribute to the energy consump-

tion by running it from a separate browser. This allowed for the separation of concerns

and ensured that "locust.io" did not contribute to the actual energy consumption of the

web browser we were interacting with. The entire experimental setup for our experiment

is described in Figure 3.2, where all components and their interactions are shown.

3.7 Measuring Digital Service Energy Impact

Reducing the energy impact of digital services entails understanding user’s needs, and

business demands. Reducing this environmental impact entails measuring the energy con-

sumed by these services. In this section, we detail the strategy to measure the energy

consumption associated with user behavior in online shopping.

We deployed a software tool to measure the energy impact of user interaction on online

shops. We chose the software tool because of the granularity in which energy measurements

are given. Although hardware tools are known to be more accurate than software tools,

they provide global energy consumption measurement i.e. the entire system against per

process or application. We cannot use hardware measurement when targeting fine-grain

20



3.7 Measuring Digital Service Energy Impact

Figure 3.2: Experimental setup
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energy consumption as in the case of user behavior impact on energy consumption. Since

we are interested in accessing the energy impact associated with specific user interactions.

It is important to choose tools that allow see the direct energy impact of these interactions.

On the client-side the direct energy impact associated with a process is being accessed not

the total energy of the access device (i.e. browser energy per interaction). Measuring

the total energy of the access device will not reflect the impacts associated with user

interaction. Software tools are known to give the granularity of energy measurement up to

process, threads, and methods level, we chose the software tool because of this granularity.

Since software measurement tools are built on empirical estimation the energy consump-

tion may vary across different systems. This implies that the accuracy and steadiness

obtained running the same job/ application in the same environment and setup may re-

sult in different measures in the energy impact due to factors such as processor thermal

effect. As noted by Fahad 2019 (19) in their comparison studies, software tools can report

significant differences in energy measurement even with the same setup and environment.

3.8 Data Collection and Analysis

The data for this research was collected using powermetrics, while the "locust.io" was

interacting with the specific service that represents our user behavior of interest. For each

user behavior, we repeated the experiment 10 times, this was to gain statistical significance

and observe if the readings from the measurements widely vary from each other.

To statistically analysis the data collected during the experiment, we cleaned the data

collected. We perform basic descriptive statistics to gain insight into the energy impact

of each user behavior. We also perform a preliminary exploratory analysis that shows the

trends and patterns in the energy impact of different user behaviors.

We proceed to perform the Kruskal Wallis’s test, a non-parametric statistical test, used

when the assumption for normality in data distribution fails. It shows the difference

in ranks of a dependent variable (Energy impact) across all the independent variables

(product browsing, product filtering, and cart updates) that made up our user behavior.

Our hypotheses are tested to help us in answering the formulated research questions.
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Client-Side Energy Impact of User’s
Behaviors: Online shopping

Client-side energy consumption is the energy consumed by end-users when engaging in

online shopping, this energy entails the device’s energy, the network device, and every

other energy that the user consumes when accessing the application. In the context, of

this research, we focus on clients-side energy consumption solely on the user device and the

energy expense to access an online shop. The energy used by other components such as

the WiFi access and the network devices are not considered here. To understand how user

behavior impacts this consumption we analyze various user interactions on the end-user

device to gain insights on the contributions of these interactions to the overall energy usage

of these services.

During this process, we identify browser efficiency as one of the factors that can affect

client-side energy consumption for shopping applications accessed via the web. Previous

studies by Saraiva 2020 (14) have shown that browser engines like Safari (version 17.6)

and Google Chrome (version 128.0.6613.114 arm64) are more energy efficient than their

counterpart like Firefox (version 127.0.2). Based on the previous studies and our prelim-

inary experiment we chose Safari as the browser engine through which our online store

will be accessed. Other influencing factors of client-side energy used are embedded in user

interactions such as page scrolling, and clicking.

The amount of time plus the level of interaction during online shopping activities directly

translates to energy consumption on the client side. Shopping applications that are multi-

media rich with high-resolution images cost more energy, however, this was not within the

context of our research.
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4. CLIENT-SIDE ENERGY IMPACT OF USER’S BEHAVIORS:
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On the client-side our research shows that the more interactive a user gets with the

online shopping application the more energy it consumes. Another, influencing factor is

the duration of interaction, as energy seems to progress linearly with the duration spent

until the resource reaches saturation.

User behavior plays a key role in determining client-side energy consumption during

online shopping, as each click and scroll costs energy.

4.1 Challenges in measuring the Client-side Energy Consump-
tion of Online Shopping

Challenges encountered during the client-side measurement stem from the energy efficiency

of the browser, operating system variation, and the type of device used by the online

shopper to access the platform, each of which constitutes to variation in energy impact

values reported.

We also identified that the battery efficiency of the access device and the processor

capability influenced the client-side energy usage. To manage this effect, we ensured that

the battery life of our experimental device was between 100 - 90 percent throughout our

experiment.

Different operating systems manage energy consumption differently. This further com-

plicates the energy consumption process making it difficult to generalize on different plat-

forms. As such the results obtained in this experiment are based on the setup defined

earlier in section 3.

4.2 Measurement Procedure

We utilize powermetrics a software measurement tool, that uses established power models

built on hardware parameters. This tool reports the energy impact of all running processes.

It can however be instrumented to measure specific process energy impact. We took a

baseline measurement of Safari without the online shop application running. We simulate

user interaction: product browsing, filtering products, and cart updates and measure the

energy impact value.

On the Client-side isolating this behavior to measure independently was challenging. We

took the client-side measurement while randomly performing different tasks for 5 minutes,

after each cycle a cooling time of 1 minute was observed, this was repeated 10 times to

gain statistical significance.
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Figure 4.1: Client-side energy impact

Figure 4.1 shows the client-side energy impact of a single user interacting with the online

shopping platform for 5 minutes. The variation in the energy impact value from the ten

experimental runs may be attributed to the fact that this interaction was done manually.

The only explanation we can give from this could be that for every click and scroll different

energy impact is associated with them. since this was manually performed, maintaining

the same scroll and clicks for each experimental run is difficult.

Also, running the same job and process in the same environment and setup may result in

different measurements. Fahad 2019 (19), supports this observation, noting that software

tools can report significant differences in energy measurement even with the same setup

and environment.

4.3 Different Behaviors Energy Consumption on the Client-
side

We could isolate specific energy impacts associated with different user’s behavior on the

client-side. The difficulty in consistently performing a single task without triggering the

other behaviors deprived us of gaining insight into how this behavior impacts energy on

the client-side.
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However, from our measurement, we discovered that for a typical shopping section by

a single user for 5 minutes, the energy impact ranges from about 700 - 900 which is a

composite score that shows that the cost associated with the client-side impact is on the

high side. This variation is widely attributed to the difficulty in replicating the exact

interaction manually for all replicas. Worth noting is that the impact of online shopping

on the client-Side is dependent on many factors aside from the influence of the users.

26



5

Server-side Energy Impact of User
Behavior: Online Shopping

To analyze and estimate energy usage associated with online shopping behavior on the

server-side. We measured and analyzed how each user shopping behavior performed by

online shoppers on the client-side impacts energy usage on the server-side. We conducted

different experiments to account for different numbers of users and different behaviors. On

the Server-side, isolating different behaviors and measuring the energy impact associated

with them was easy against what we noticed on the client-side. This ease came with the

utilization of Python script that leveraged locust.io to simulate different workloads. This

allows for direct interaction with specific behaviors of interest that we measured at any

given time. We used PowerMetrics to collect the energy impact data associated with the

service we are interacting with at that point. However, modeling the server-side energy

impact of user behavior at scale may be challenging due to the interconnection of different

devices, their design, and the underlying architecture. In the context of this research, most

of this complexity was controlled because of the simplicity of our experimental setup. As

described in the experimental design 3.2, our experimental setup runs on a single platform.

5.1 Findings and Discussion

During the exploratory data analysis phase, we discovered that different primitive user

behaviors have varying degrees of energy impact on the server. This exploration shows

that the energy impacts increase linearly with an increase in the number of concurrent

users. However, this linearity gets to an equilibrium point after which the energy impact

begins to drop. In our experiment, the energy impact process linearly upward up to
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300 concurrent users. After, this point the energy impact begins to drop, based on our

observation during the experiment this drop in energy impact resulted from the fact that

the number of requests processed and delivered dropped. We deduced that the average

number of requests processed and delivered has a direct influence on the energy impact of

servers. We also observed that the response time increases with the number of concurrent

users, but this rise in the response time did not directly translate to a higher energy impact.

What we could derive from this, points to the fact that the system was overloaded leading

to system resources being saturated.

Based on the queuing theory principle, when a system is overloaded jobs waiting to be

processed join the queue leading to a longer time in the CPU, this also explains why the

percentage of CPU usage did not directly translate to higher energy impact. This can

simply be explained that although the CPU operates at a high capacity the number of

successful jobs processed and delivered is less. So, the CPU is less efficient at this point.

It might also be that at peak usage the CPU enters context-switching mode instead of

actual task performance leading to inefficiencies in the amount of workload successfully

processed and delivered. The queuing leads to tasks spending more time in the CPU. This

delay and queuing causes some requests to drop thus reducing the actual work performed,

as such when requests are no longer processed effectively, energy impact reduces because

less computation and resources are being engaged.

From our analysis on the server-side, as shown in Figure 5.2, product browsing had the

highest energy impact on the server while shopping. Cart update energy impact is minimal

compared to product browsing and filtering for different numbers of users. While the result

shows different levels of energy impact on the server due to user behaviors we acknowledge

that other parameters such as the frequency of user interaction, and the energy efficiency

of the server itself have an impact on server energy usage.

Also, Figure 5.1 shows the energy impact of different numbers of online shoppers, simul-

taneously performing different shopping behaviors: product browsing, product filtering,

and cart updates. As shown in the plots the energy impact increases with the number of

users, until resources are saturated.

To test our hypotheses, we performed descriptive statistics to gain insight into the dis-

tribution of our data. The distribution is visualized using density plots and qqplots. These

plots are known for visualizing the distribution and normality level of experimental data.

The density distribution 5.3 shows that our energy impact data is not normally dis-

tributed, as the plot did not show the normal bell-like shape that indicates normality.
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Figure 5.1: Energy impact of different online shopping behaviors across varying numbers of
users.
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Figure 5.2: Energy impact for different user behaviors across varying numbers of users.
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We confirm this distribution using qqplots 5.4 which confirms the non-normality of our

distribution as the points widely vary from the source.

Figure 5.3 shows the energy impact data for one hundred users with different shopping

behaviors. The shape of the plots varies from the well-known bell-like shape that signifies

normality and Figure 5.4 shows that our energy impacts data varied from the source. As

all the points did not cluster around the center.

While we roll out the possibility of normality in our data. We applied the Kruskal Wallis

test, a non-parametric test that the assumptions support the distribution of our data to test

our hypothesis since our data set violates the assumptions of normality and homogeneity

of variance.

Kruskal Wallis test reports the chi-square test statistic that shows the difference in

ranks of dependent variables “EnergyImpact” across all the independent variables “product

browsing, product filtering, and cart updates”. A degree of freedom that shows the number

of groups to be compared minus 1. A p-value that states the level of statistical significance

of the results. For this experiment, we chose the 95 percent confidence interval which is the

standard commonly used, it strikes a balance between accuracy and precision for accepting

or refuting our null hypothesis.

Table 5.1: Kruskal-Wallis Comparison Test

Kruskal chi-square df p-value
30.814 2 2.037× 10−7

Table 5.1 shows the result obtained from our statistical test. A p-value of 2.037×10−7 is

obtained, which is less than the significance level of 0.05. Based on this, we reject the null

hypothesis and accept the alternative hypothesis. We conclude that with 95% confidence

there is a significant difference in energy impact across different user behaviors.

Since we accept the alternate, hypothesis that states that the energy impact varies across

different user behaviors, we further probe to know if the behaviors vary from each other.

To check this variation we used the pair-wise Wilcox test, which is a statistical test used

to compare the differences between groups.

This test provides a matrix that shows the p-values of the comparison between different

groups.

The pair-wise test in table 5.2, shows that in the comparison between groups 1 and 2,

there exists a significant difference between (product filtering vs. cart update). Between

groups 1 and 3 (product filtering and product browsing), the p-value is higher than 0.05,
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Table 5.2: Wilcox Pairwise Test

m n p-value significance
1 (product filtering) 2 (cart update) 4.6× 10−6 significant
1 (product filtering) 3 (product browsing) 1 not significant

2 (cart update) 3 (product browsing) 5.5× 10−6 significant

shows that there exists no statistically significant difference in energy impact between

product filtering and product browsing and between groups 2 and 3, the p-value is less

than 0.05 shows that in this group statistically there exists a significant difference in energy

impact between cart update and product browsing due to user behavior.

5.2 Modeling Server-side Energy Impact

We propose a regression model that can help predict how user behavior impacts server-

side energy, taking into account the user’s shopping behavior, the number of users, and

the duration of interaction. This model can be used for predictive analysis, by providing

insight into a shopping platform’s future energy needs. The model can be used to identify

areas and behaviors with high energy requirements.

Mathematically, we define the server-side consumption model as:

SE = B0 + C1 ∗ Ui + C2.Fj + C3 ∗ T ∗N (5.1)

Where,

SE = server-side energy impact

B0 = the baseline energy impact of the server (this represents the energy impact of an idle

server when no shopping interaction is performed).

C1, C2, C3 = coefficient ( these are weights assigned to variables, they are multipliers that

determine how much influence each variable, i.e, Ui, Fi, and T has on energy impact.

Ui = user’s shopping behavior

Fi = fail request T = time per interaction N = the number of users.
1

1These coefficients are determined by analyzing real data, using regression tools, this tool adjusts the
coefficients to find the best fit that the model can use to make predictions close to the real data. Theoreti-
cally, coefficients can be set manually by guessing the weight. Practically, this is not recommended, because
guessing the weight might not reflect the true relationship between energy impact and user behavior.
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This model captures the number of users interacting with the shop, the shopping behavior

exhibited, the failed request, and the duration of interaction, which are the variables that

collectively influence server-side energy impact.

5.3 Energy Cost of Reprocessing Failed Request

When the system is still efficient and processing requests and jobs at 100% without any

failure the energy impact increases linearly. When the server exceeds the point of 100%

request delivery the efficiency of the server reduces.

On re-sending a failed request, we reason that this might incur extra costs on energy

used. This is because each request will require an extra CPU cycle, computation as well as

network activity, which collectively consumes energy. When resending such requests right

after a failure, the energy cost may spike up because the server becomes less efficient under

high load. However, we acknowledge that efficient caching techniques, error handling, and

load balancing can minimize the energy overhead of re-sending failed requests.

On the server side, the shopping behavior that has the highest energy impact is product

browsing this can be explained by the high volume of requests sent to the server, product

filtering follows this impact because filtering products demands a high level of processing

from the servers. However, we discovered that carts update had the least energy impact on

the server side. For failed requests, re-sending and re-processing such requests may incur

extra costs in terms of energy usage.
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Figure 5.3: Density plots Showing distribution of different behavior for 100 users
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5.3 Energy Cost of Reprocessing Failed Request

Figure 5.4: Normality check using qqplots.
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6

Observation, Insights and Discussion

This chapter provides insights from our analysis of the energy impact on both the client

and server sides. We provide answers to the set research questions and proposed strategies

to reduce this energy impact.

From our experimental analysis, we found that different user behaviors and interactions

influenced the energy impact on the client-side. Our systematic research reveals that

the type of device and the energy efficiency of the browser engine, via which a shopping

application is accessed influences the energy usage on the client side. On the server-side,

the energy impact is heavily influenced by the number of concurrent users, the complexity

of user interaction, the server’s efficiency, and the server’s ability to balance load effectively.

Our research shows that user shopping behavior has an impact on both server and client-

side energy usage. We also found that obtaining single metrics for end-to-end energy

usage in the computing continuum is not visible from the insights obtained from our

research; existing research in 2 supports this due to the inter-connectivity of devices and

their heterogeneity at each level of the computing continuum.

On the analysis of how different users’ behaviors impact energy usage on the computing

continuum, the answers to the proposed research question provide insight into the influences

of these behaviors on energy usage on the computing continuum.

6.1 Observation, Findings, and Implications

We approach our research questions through a systematic study, where we set our re-

search objectives which were to access and measure the energy impact of digital service,

specifically, in the online shopping domain. This was to understand how users’ shopping

interaction and how user behavior impacts energy consumption. We performed holistic
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6.1 Observation, Findings, and Implications

literature research where we identified gaps in the existing body of knowledge. The insight

gained from the systematic study guided us in the development of our research question

and subsequently the development of the research hypothesis. Based on the outcome of

our systematic study and our experiment we attempt to answer the formulated research

questions.

RQ1. What are the methodologies for measuring the end-to-end energy con-

sumption of digital services across the computing continuum?

Our research as evidenced in section 2, previous studies have attempted different method-

ologies for tracking energy use in the computing continuum. Different methodologies have

been proposed and implemented at different layers of the continuum. From the systematic

studies, we identified the following as the methodologies for monitoring and measuring

digital service energy impacts:

Energy profiling: These are mostly software tools used to track the energy consump-

tion in the continuum. Here, energy impact data can be obtained at different levels of

granularity.

Simulation and modeling method: These are mostly created as virtual prototypes

to imitate the computing environment, where realistic workloads can be tested. These

methodologies are used to estimate energy consumption in the continuum, based on a set

of defined parameters and behavior tested.

Analytical method: This are empirical model that relies on real data to estimate energy

consumption. The estimates from this method are based on energy data reported by system

parameters. This method provides data-driven insights and has predictive capabilities.

Life Cycle Assessment (LCA): is a well-known methodology that can be used to mea-

sure the end-to-end energy consumption of digital services. This methodology gives a

holistic overview of the energy impact associated with digital services from manufacturing

to disposal. However, obtaining the correct data for the implementation of this model is

challenging.

Ideally, different methodologies can be deployed at different layers of the continuum

to measure the energy consumption of digital services, but each of these methodologies

has its advantages and disadvantages, as such trade-offs should be considered before a

methodology is deployed. 1

1When considering the end-to-end measurement in the computing continuum, a single methodology is
not sufficient to effectively measure the energy impact of digital services. However, the simulation technique
which is the closest to offering an end-to-end overview of energy measurement only gives an estimate.
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To gain a clear understanding of the end-to-end energy consumption of digital services

across a computing continuum different methodologies and tools should be deployed at each

layer of the continuum. Deploying different methodologies at each layer of the continuum

helps in accounting for the challenges faced due to the heterogeneity of devices.

RQ2. Does the energy consumption of digital services vary across the different

components of the computing continuum?

In our research on how energy usage varies across different components of the continuum,

the end-user device and server energy usage were the components of interest. Energy

usage at these layers differs significantly because they are influenced by different factors.

Although we did not isolate different user behaviors on the client-side, the energy impact

associated with 5 minutes of typical interaction with a shopping platform earned an energy

impact ranging from 700 to 900. While, on the server-side for a single user a typical 5

minutes of product browsing, product filtering and cart updates the energy impact scores

are 600, 300, and 100 respectively. These numbers are composite score that takes into

account the energy consumption of different components of the experimental device. The

lower the composite score the better.

Since behaviors on the client-side were not isolated we can not directly compare the

degree variation. However, We identified that different factors at each layer contribute to

variations in energy impact. As shown in 4 client-side energy usage is mostly influenced

by the energy efficiency of the browser through which the service is accessed; the device

type and the nature of the interaction performed by the user impact client-side energy

usage. On the server side, factors such as the workload, the number of concurrent users,

the nature of user interaction, and server efficiency significantly influence energy usage.

RQ3. To what extent does users behavioral pattern impact energy usage?

Research question three aims to provide insight into which specific user behavior has the

most significant impact on energy usage across the computing continuum. We found that

varying shopping behaviors utilize resources differently, with the duration and device type

of service access also influencing this usage. However, on the client-side, browsing product

pages may have a significant impact on energy usage due to page rendering.

On the server-side 5 Product browsing had the highest energy impact, highlighting the

cumulative effect of frequent database access and content delivery. This is followed by the

energy impact of product filtering, as product search requires an algorithm and database

matches. The cart update’s energy impact though visible, this behavior appears to be

more energy-efficient than product browsing and product filtering on the server-side.
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6.2 Strategies to mitigate Online Shopping Energy Impact

We could see that each user interaction behavior had an impact on energy usage on the

computing continuum, though the level severity differs. In contrast to the belief that cart

updates would have the greatest impact on energy usage due to database updates and

computations, we found that product browsing and filtering took the lead in this analysis.

Product browsing leading in this energy impact can be attributed to the database fetches,

rendering requirements of each user interaction, and the demand for rendering complex

multi-media content.

RQ4. What are the environmental impacts of online shopping?

As part of our research, we looked at the environmental impact of online shopping on the

computing continuum. Aside from the carbon impact associated with the last mileage

delivery. Carbon footprints are left by the end-user devices and the data center that

hosts the shopping applications. The quest for high-quality service, rapid response, service

availability, and scalability compounds these impacts. On the client-side, the convenience

of online shopping tends to change users’ shopping habits, leading to smaller and more

frequent purchases which increases the environmental impact left behind.

6.2 Strategies to mitigate Online Shopping Energy Impact

Based on our research insights, we propose educating digital service users on the impact of

their shopping behavior on the continuum. Frequent shoppers should prioritize the use of

energy-efficient devices to access online shopping applications; they should also make use

of energy-saving features during online shopping sessions. Online shoppers should also be

encouraged to bulk purchases to reduce frequent and random visits to online stores.

We recommend light web page development for service designers and developers to min-

imize energy consumption during page loading and rendering time. Also, the capability

of adaptive web applications that adapt effectively to the device be explored to reduce

the issue of resource contention. We should optimize algorithms that frequently require

database access and updates to reduce energy costs due to computation overhead.
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7

Conclusion

7.1 Summary

The objective of this research was to investigate how user behavior, impacts energy con-

sumption in the computing continuum and to propose strategies to mitigate the negative

effects of these behaviors. This research is relevant due to the growth in the number of dig-

ital services. Understanding how user interaction with these services affects energy usage

will help reduce the carbon footprint left by these services due to user activities. Through

awareness creation on issues related to sustainability due to digitalization, this research

aims to promote friendly environmental uses of digital solutions.

We presented insights on how different online shopping behaviors and interactions impact

the energy usage of the computing continuum. We started by theoretically reviewing exist-

ing literature on digital services and continuum energy usage. From preliminary research,

we streamlined our work to understand how user behavior in online shopping impacts

continuum energy usage.

Data collected on user behavior and its associated energy impact were analyzed, and

results show that in the context of online shopping product browsing has the highest impact

on energy on the server-side. Based on the insight from the data collected and analyzed we

develop a statistical model that predicts server-side energy usage based on different user

behaviors. This model is usable for predictive analysis and informing developers about the

energy efficiency/need of their digital services. This research provides insights that address

a critical aspect of sustainable IT by focusing on user interactions, behavioral patterns,

and their environmental implications.

Besides the behavioral influence of users on energy usage, we identified that browser

energy efficiency impacts client-side energy. On the server side, resource contention and
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saturation, as well as the number of concurrent users and frequency of access, impacts

energy usage.

We addressed challenges associated with empirical studies in computer science in terms

of energy monitoring and measurement tools, encouraging the design of tools that are

cross-platform compatible and suited to new hardware. We summarized the implications

of our findings for service users, developers, and policymakers.

The insight from the theoretical and empirical studies helped us understand shopping

behaviors with the highest energy impact and the factors that influence this consumption.

7.2 Contributions

This research provides insights into how user interactions during online shopping sessions

impact energy usage in the continuum, which can aid developers in code optimization to

reduce resource usage, reduce latency, and improve load balancing. Quantifying the energy

impact of different user behaviors highlights behaviors with high energy spikes in online

shopping while pointing to where consumption can be reduced to lower carbon emissions.

With insights from this research, energy-efficient user behaviors are encouraged, such as

a reduction in incessant small shopping sessions to promote sustainable use of digital

services. Educating users about the energy impact of their digital behaviors to foster more

conscientious usage patterns. For digital service providers, understanding user behavior

can lead to optimization strategies that can be leveraged to reduce energy impact due to

users’ behavior. Policymakers can leverage findings from this research to make informed

decisions and regulations that promote energy efficiency in the digital service industry.

7.3 Threats to validity

During the research, data collection, and analysis phase, we identified some threats that

can influence the validity of our results. These threats cut across, internal, external, and

construct validity. User behaviors and technology evolve so these findings might not hold in

the future. The experimental results depend highly on the data collected from powermet-

rics, which gives a composite score of energy impact per process. Results may vary with

different tools. However, within the setup and technical specification described in 3.2, 3.3

this result can be replicated. The experiment was performed in a controlled environment,

results might differ in real-world scenarios. The experimental platform poses a threat to

the validity of these results as the result might be different given a different setup. The
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7. CONCLUSION

accuracy and reliability of tools and methods used to measure energy consumption and

user behavior may affect the generality of our measurements.

Also, operating a client and server on the same device poses both advantages and im-

plications to the experiment. The issue of resource contention will arise due to the com-

putational resources being shared. This contention is capable of elevating the amount of

energy used as well as impacting the battery life of the experimental device. To mitigate

this threat, we ensured that only the setup needed for the experiment was running. Also,

we allow for cooling time between the experiments to reduce the thermal effect.

On the brighter side consolidating the client and server on a single machine tends to

reduce the energy footprint associated with network communication and idle states.

On the client side, accurately defining and measuring specific user behaviors was chal-

lenging, which could lead to misinterpretation of user actions. As such we did not isolate

users behavior on the client side.

7.4 Future Work

This research serves as a foundation for future studies to explore the impact of user behavior

on new technologies’ energy usage.

We proposed developing efficient, cross-platform tools that are hardware and operating

system-independent for monitoring and measuring energy consumption data.

We also proposed research into how specific user interface design can impact energy

consumption in the context of online shopping.

42



References

[1] Unctad annual report 2021, 2021. URL https://unctad.org/annual-report-2021.

2

[2] Ehsan Ahvar, Anne-Cécile Orgerie, and Adrien Lebre. Estimating energy consumption

of cloud, fog, and edge computing infrastructures. IEEE Transactions on Sustainable

Computing, 7(2):277–288, 2019. 1, 9

[3] AIOTI. Aioti computing continuum. White paper, 2022. URL https://ioti.eu/

wp-content/uploads/2022/04/AIOTI-Computing-Continuum-Final.pdf. Accessed:

April 4, 2024. 1

[4] Mohammad Aldossary. A review of dynamic resource management in cloud computing

environments. Computer Systems Science & Engineering, 36(3), 2021. 6

[5] Autorité de régulation des communications électroniques et des postes. Achiev-

ing digital sustainability. https://en.arcep.fr/uploads/tx_gspublication/

achieving-digital-sustainability-report-dec2020.pdf, 2020. 1

[6] Jayant Baliga, Robert WA Ayre, Kerry Hinton, and Rodney S Tucker. Green cloud

computing: Balancing energy in processing, storage, and transport. Proceedings of

the IEEE, 99(1):149–167, 2010. 8

[7] Saeedeh Baneshi, Anuj Pathania, Benny Akesson, Andy Pimentel, and Ana-Lucia

Varbanescu. Analyzing per-application energy consumption in a multi-application

computing continuum. fmec, 2024. 7

[8] Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. Energy-aware resource

allocation heuristics for efficient management of data centers for cloud computing.

Future generation computer systems, 28(5):755–768, 2012. 6

43

https://unctad.org/annual-report-2021
https://ioti.eu/wp-content/uploads/2022/04/AIOTI-Computing-Continuum-Final.pdf
https://ioti.eu/wp-content/uploads/2022/04/AIOTI-Computing-Continuum-Final.pdf
https://en.arcep.fr/uploads/tx_gspublication/achieving-digital-sustainability-report-dec2020.pdf
https://en.arcep.fr/uploads/tx_gspublication/achieving-digital-sustainability-report-dec2020.pdf


REFERENCES

[9] Victor R Basili1 Gianluigi Caldiera and H Dieter Rombach. The goal question metric

approach. Encyclopedia of software engineering, pages 528–532, 1994. 13

[10] Ana Cardoso. Reducing the energy use of video gaming: energy efficiency and gami-

fication. 2020. 8

[11] Aaron Carroll and Gernot Heiser. An analysis of power consumption in a smartphone.

In 2010 USENIX Annual Technical Conference (USENIX ATC 10), 2010. 7

[12] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan Saroiu,

Ranveer Chandra, and Paramvir Bahl. Maui: making smartphones last longer with

code offload. In Proceedings of the 8th international conference on Mobile systems,

applications, and services, pages 49–62, 2010. 8

[13] Sarah Darby. The effectiveness of feedback on energy consumption. 2006. 9

[14] João de Macedo, João Aloísio, Nelson Gonçalves, Rui Pereira, and João Saraiva. En-

ergy wars-chrome vs. firefox: Which browser is more energy efficient? In Proceedings

of the 35th IEEE/ACM International Conference on Automated Software Engineering,

pages 159–165, 2020. 23

[15] Florian Dost and Erik Maier. E-commerce effects on energy consumption: A multi-

year ecosystem-level assessment. Journal of Industrial Ecology, 22(4):799–812, 2018.

9, 11

[16] European Commission. Eu commission, 2022. URL https://commission.europa.

eu/document/download/51991f3f-a49b-4f4d-811e-c854449169d8_en?filename=

com_2022_548_3_en.pdf. 3

[17] European Commission. Commission proposes new rules on cross-border public

services. Press release, March 2024. URL https://ec.europa.eu/commission/

presscorner/detail/en/IP_24_585. Accessed: April 4, 2024. 1

[18] European Union. Eurupa dataset, Year of Publication. URL https://data.europa.

eu/doi/10.2833/478689. 1

[19] Muhammad Fahad, Arsalan Shahid, Ravi Reddy Manumachu, and Alexey Lastovet-

sky. A comparative study of methods for measurement of energy of computing. En-

ergies, 12(11):2204, 2019. 22, 25

44

https://commission.europa.eu/document/download/51991f3f-a49b-4f4d-811e-c854449169d8_en?filename=com_2022_548_3_en.pdf
https://commission.europa.eu/document/download/51991f3f-a49b-4f4d-811e-c854449169d8_en?filename=com_2022_548_3_en.pdf
https://commission.europa.eu/document/download/51991f3f-a49b-4f4d-811e-c854449169d8_en?filename=com_2022_548_3_en.pdf
https://ec.europa.eu/commission/presscorner/detail/en/IP_24_585
https://ec.europa.eu/commission/presscorner/detail/en/IP_24_585
https://data.europa.eu/doi/10.2833/478689
https://data.europa.eu/doi/10.2833/478689


REFERENCES

[20] Kirsten Gram-Hanssen. Efficient technologies or user behaviour, which is the more

important when reducing households’ energy consumption? Energy Efficiency, 6(3):

447–457, 2013. 10

[21] Loic Guegan and Anne-Cécile Orgerie. Estimating the end-to-end energy consump-

tion of low-bandwidth iot applications for wifi devices. In 2019 IEEE International

Conference on Cloud Computing Technology and Science (CloudCom), pages 287–294.

IEEE, 2019. 1, 7

[22] Xiaoying Guo, Kwek Choon Ling, and Min Liu. Evaluating factors influencing con-

sumer satisfaction towards online shopping in china. Asian social science, 8(13):40,

2012. 9

[23] Mikko VJ Heikkinen, Jukka K Nurminen, Timo Smura, and Heikki Hämmäinen. En-

ergy efficiency of mobile handsets: Measuring user attitudes and behavior. Telematics

and Informatics, 29(4):387–399, 2012. 9

[24] Kerry Hinton, Jayant Baliga, Michael Feng, Robert Ayre, and Rodney S Tucker. Power

consumption and energy efficiency in the internet. IEEE Network, 25(2):6–12, 2011.

8

[25] David Huckebrink, Jonas Finke, and Valentin Bertsch. How user behaviour affects

emissions and costs in residential energy systems—the impacts of clothing and thermal

comfort. Environmental Research Communications, 5(11):115009, 2023. 4, 10

[26] International Energy Agency. Electricity 2024: Analysis

and forecast to 2026, 2024. URL https://iea.blob.core.

windows.net/assets/6b2fd954-2017-408e-bf08-952fdd62118a/

Electricity2024-Analysisandforecastto2026.pdf. 1

[27] George KAMIYA, Paolo BERTOLDI, et al. Energy consumption in data centres and

broadband communication networks in the eu. 2024. 1

[28] Yunbo Li, Anne-Cécile Orgerie, Ivan Rodero, Betsegaw Lemma Amersho, Manish

Parashar, and Jean-Marc Menaud. End-to-end energy models for edge cloud-based

iot platforms: Application to data stream analysis in iot. Future Generation Computer

Systems, 87:667–678, 2018. 1, 7, 8

[Locust.io] Locust.io. An open source load testing tool. https://locust.io/. 18

45

https://iea.blob.core.windows.net/assets/6b2fd954-2017-408e-bf08-952fdd62118a/Electricity2024-Analysisandforecastto2026.pdf
https://iea.blob.core.windows.net/assets/6b2fd954-2017-408e-bf08-952fdd62118a/Electricity2024-Analysisandforecastto2026.pdf
https://iea.blob.core.windows.net/assets/6b2fd954-2017-408e-bf08-952fdd62118a/Electricity2024-Analysisandforecastto2026.pdf
https://locust.io/


REFERENCES

[29] Susan Lund, Anu Madgavkar, Jan Mischke, and Jaana Remes. What’s next for con-

sumers, workers, and companies in the post-covid-19 recovery. McKinsey & Company,

2021. 2, 11

[30] Elham Maghsoudi Nia, Queena K Qian, and Henk J Visscher. Analysis of occupant

behaviours in energy efficiency retrofitting projects. Land, 11(11):1944, 2022. 4, 9

[31] Mozilla Developer Network. Firefox source docs: Power metrics, 2024. URL https://

firefox-source-docs.mozilla.org/performance/powermetrics.html. Accessed:

2024-08-01. 16

[32] .NET Foundation. eshoponcontainers, 2024. URL https://github.com/dotnet/

eShop. Accessed: 2024-08-01. 16

[33] Sergio Pérez, Patricia Arroba, and José M Moya. Energy-conscious optimization

of edge computing through deep reinforcement learning and two-phase immersion

cooling. Future Generation Computer Systems, 125:891–907, 2021. 7

[34] Chris Preist, Dan Schien, Paul Shabajee, Stephen Wood, and Christopher Hodgson.

Analyzing end-to-end energy consumption for digital services. Computer, 47(5):92–95,

2014. 1, 7, 8, 10

[35] Kurt W Roth and Kurtis McKenney. Energy consumption by consumer electronics in

US residences. TIAX LLC, 2007. 7

[36] Robert Rusek, Joaquim Melendez Frigola, and Joan Colomer Llinas. Influence of user

behavior on energy consumption and its relation with comfort. a case study based on

sensor and crowd-sensed data. 2021. 9

[37] Jeffrey D Sachs, Christian Kroll, Guillame Lafortune, Grayson Fuller, and Finn

Woelm. Sustainable development report 2022. Cambridge University Press, 2022.

2

[38] Bardia Safaei, Amir Mahdi Hosseini Monazzah, Milad Barzegar Bafroei, and Alireza

Ejlali. Reliability side-effects in internet of things application layer protocols. In

2nd International Conference on System Reliability and Safety (ICSRS 2017), pages

207–212, 2017. doi: 10.1109/ICSRS.2017.8272822. 2

[39] Daniel Schien, Paul Shabajee, Mike Yearworth, and Chris Preist. Modeling and as-

sessing variability in energy consumption during the use stage of online multimedia

services. Journal of Industrial Ecology, 17(6):800–813, 2013. 9, 11

46

https://firefox-source-docs.mozilla.org/performance/powermetrics.html
https://firefox-source-docs.mozilla.org/performance/powermetrics.html
https://github.com/dotnet/eShop
https://github.com/dotnet/eShop


REFERENCES

[40] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge computing:

Vision and challenges. IEEE internet of things journal, 3(5):637–646, 2016. 7

[41] Statista. Online shopping - statistics & facts. https://www.statista.com/topics/

871/online-shopping/, Year of Access. 2

[42] Kamlesh Tiwari and Mohammad Shadab Khan. Sustainability accounting and report-

ing in the industry 4.0. Journal of cleaner production, 258:120783, 2020. 8

[43] Ihsan Ullah, Hyun-Kyo Lim, Yeong-Jun Seok, and Youn-Hee Han. Optimizing task

offloading and resource allocation in edge-cloud networks: a drl approach. Journal of

Cloud Computing, 12(1):112, 2023. 8

[44] Eric Williams. Environmental effects of information and communications technologies.

nature, 479(7373):354–358, 2011. 11

[45] Claes Wohlin, Martin Höst, and Kennet Henningsson. Empirical research methods in

web and software engineering. Web engineering, pages 409–430, 2006. 8

[46] World Bank. With decisive actions, net zero energy is within reach in the emerging

europe and central asia, says new world bank report. Press release, February

2024. URL https://www.worldbank.org/en/news/press-release/2024/02/21/

with-decisive-actions-net-zero-energy-is-within-reach-in-the-emerging-europe-and-central-asia-says-new-world-bank-report.

Accessed: April 4, 2024. 1

[47] Jie Xu, Lixing Chen, and Shaolei Ren. Online learning for offloading and autoscal-

ing in energy harvesting mobile edge computing. IEEE Transactions on Cognitive

Communications and Networking, 3(3):361–373, 2017. 7

47

https://www.statista.com/topics/871/online-shopping/
https://www.statista.com/topics/871/online-shopping/
https://www.worldbank.org/en/news/press-release/2024/02/21/with-decisive-actions-net-zero-energy-is-within-reach-in-the-emerging-europe-and-central-asia-says-new-world-bank-report
https://www.worldbank.org/en/news/press-release/2024/02/21/with-decisive-actions-net-zero-energy-is-within-reach-in-the-emerging-europe-and-central-asia-says-new-world-bank-report


Appendix

We fit our energy impact data into our proposed model, the regression results show that

at 99.96% our model can explain the variation in the Energy Impact values observed.

The results terminologies are explained below:

Residual value: shows the difference between observed and predicted value.

Coefficient: the estimated value of each predictor.

Intercept: The baseline measurement in this case a single user.

Estimate: explains how much impact each variable has on energy holding other param-

eters constant.

Residual Std.Error: the amount by which model prediction differs from observed

values.

Multiple R-Square: percentage of variance explained by the model. Adjusted R-

Squared: how much the model fits.

F-statistic: test the overall significance model. It compares the model fit against the

intercept. Check if the model best explains variation in the dependent variable.

p-value: shows the significant level of the model.

All raw data files and an analysis script, including the replication package

are available at: https://github.com/nsybee/User-behavior-impact-of-digital-

services.git
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Figure 7.1: Computing continuum layers

Figure 7.2: Regression result of product browsing
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Figure 7.3: Regression result of Cart Update

Figure 7.4: Caption

Figure 7.5: Regression result of 100 users
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Figure 7.6: Regression result of 5 users
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