
Analyzing Per-Application Energy Consumption in
a Multi-Application Computing Continuum

Saeedeh Baneshi, Anuj Pathania, Benny Akesson, Andy Pimentel
University of Amsterdam

Amsterdam, The Netherlands
{s.baneshi,a.pathania,a.d.pimentel,k.b.akesson}@uva.nl

Ana-Lucia Varbanescu
University of Twente

Enschede, The Netherlands
a.l.varbanescu@utwente.nl

Abstract—In today’s digital society, diverse computing de-
vices—from edge devices to data centers—support various ap-
plications, each with specific performance and energy character-
istics. Analyzing application energy consumption is crucial for
improving energy efficiency, optimizing resources, and reducing
environmental impact.

However, while comprehensive energy measurements are feasi-
ble for specific configurations, they are impractical for assessing
diverse application mappings. Still, stakeholders such as cloud
providers, developers, users, and researchers need insights into
application-level energy behavior for informed decision-making.

In this work, we propose a fine-grained simulation approach
for analyzing application energy behavior in edge/cloud environ-
ments. We implemented our approach as an enhanced version of
the iFogSim framework. We demonstrate its effectiveness by eval-
uating different multi-application scenarios and configurations
for a video surveillance application. Our approach facilitates the
fast evaluation of different scenarios and deployment strategies,
providing insights that can contribute to more energy-efficient
edge/cloud computing systems and digital services.

Index Terms—Computing Continuum, Application Energy
Consumption, Application Mapping, Scenario analysis, Edge
Computing, Simulation

I. INTRODUCTION

Most IoT applications require high Quality of Service (QoS)
to ensure timely data processing. For example, intelligent
surveillance cameras require quick analysis for object de-
tection and tracking with minimal latency. Cloud computing
handles these applications well, but the growing number of
connected cameras and the necessary high-throughput data
traffic raises concerns about network congestion and high
energy consumption [1]–[3]. Edge computing has emerged as
a viable alternative, enabling the use of processing resources
closer to the data source to reduce data traffic and congestion.

The allocation of application modules across various de-
vices, spanning the entire continuum from edge nodes to the
cloud, significantly impacts energy consumption and latency
[4], [5]. To optimize device selection and placement policies, a
detailed analysis of application energy consumption behavior
across various mappings is essential. Therefore, fine-grained
characterizing the end-to-end energy consumption of appli-
cations is critical. This requires integrating both computation
and networking energy consumption and addressing the com-
plexities of multi-application environments to achieve realistic
end-to-end energy estimations.

To facilitate such end-to-end analysis, we present an en-
hanced version of the iFogSim framework, improved to com-
bine networking and computing energy consumption and to
support energy accounting for multi-application simulations.
To demonstrate our improvements, we use a surveillance
application as a basic case-study, and simulate various multi-
application mapping scenarios by running different instances
and/or different workloads of this application simultaneously.
Our simulation results illustrate the non-negligible impact of
communication energy consumption, as well as the significant
differences between mappings, especially in the context of
multi-applications. Such information is essential for stake-
holders, such as application developers, system operators, and
integrators to make informed decisions regarding their systems
architecture, resource mapping, and scheduling policies.

The three main contributions of this work are as follows:

1) We extend iFogSim’s energy model to also consider the
energy consumption of communication. To this end, we
develop: (a) a time-based model to estimate the energy
consumption of NICs (Network Interface Cards) in end-
user devices, enabling support for space-shared com-
munication in the network, and (b) a flow-based model
for shared devices to report the energy consumption of
sending tasks.

2) We improve iFogSim’s reporting to collect finer-grain
data, thus enabling collecting virtual machine energy
consumption, an essential improvement for analysis of
multi-application scenarios.

3) We illustrate how to characterize and compare the energy
consumption - including both computing and commu-
nication - of two co-located applications using various
mapping scenarios. We also showcase the impact of
changing application workload.

Open Source Contributions: The code for our enhanced
iFogSim is publicly available, under MIT license, at https:
//github.com/saeedehbaneshi/IFogSim.

The remainder of this article is organized as follows. Sec-
tion II introduces the iFogSim framework and the surveillance
case study. Section III discusses related work. Section IV out-
lines our enhanced version of iFogSim, detailing the modeling
of network energy consumption and the granularity improve-
ments per virtual machine and tasks. Next, in Section V, we



describe the experimental scenarios and analyse the results.
Finally, in Section VI, we conclude the paper and highlight
future research directions.

II. BACKGROUND

In this section, we introduce iFogSim, a simulation frame-
work for IoT and Fog computing, and present the modeling
of our case-study surveillance application - within iFogSim.

A. iFogSim

Today’s computing continuum infrastructures have diverse
resources that support distributed applications. The energy
consumption and Quality of Service (QoS) of these appli-
cations vary with placement strategies and device character-
istics. Measuring energy consumption in such environments
is challenging and costly [6], [7]. Therefore, simulation is a
practical alternative for estimating energy consumption in the
computing continuum.

There are several simulators for modeling computing con-
tinuum and edge-cloud architectures. One of these well-known
simulators is iFogSim [8], a framework built on top of
CloudSim [9], a popular framework for modeling cloud com-
puting environments. iFogSim simulates components across
the computing continuum, from edge devices to cloud data
centers [8], allowing researchers to evaluate the effectiveness
of various resource management techniques. It is designed
to measure performance metrics like latency, network usage,
energy consumption, and cost.

iFogSim supports IoT sensors, actuators, fog devices, and
cloud data centers interconnected via network links. Using
the Sense-Process-Actuate model, sensors send data to IoT
networks, fog devices process it, and insights are translated
into actions for actuators [8].

iFogSim models applications as independent modules with
specific computational requirements. It simulates physical
components like sensors, fog devices, and actuators with
attributes defining their capabilities and interactions. Appli-
cations are represented as directed graphs with vertices as
processing modules and edges as data dependencies. iFogSim
uses virtual machines (VMs) for module execution and in-
cludes management components, such as ModuleMapping and
Controller, to facilitate resource allocation and deployment
within the fog environment, enabling detailed simulation of
various fog computing scenarios [7], [10].

B. Surveillance Case Study

For our experiments, we consider a surveillance application
within the iFogSim framework. The application processes
data captured by the smart cameras. Initially, the cameras
analyze the data, which is then processed by ”continuum”
equipment based on placement strategy. Each module handles
and forwards tasks, known as tuples, for further processing
[4], [8], [11].

The functions of the application modules are as follows:
Motion Detector: embedded in smart cameras, it continuously
analyzes video to detect motion and forwards relevant data.

TABLE I: Description of inter-module edges of application
case studies [8]

Tuple type CPU load [MI] Data Size [B]
RAW VIDEO STREAM 1000 20000
MOTION VIDEO STREAM 2000 2000
DETECTED OBJECT 500 2000
OBJECT LOCATION 1000 100
PTZ PARAMS 100 28

Object Detector: it receives data from the motion detector,
extracts moving objects, calculates their coordinates, and ini-
tiates tracking.
Object Tracker: it receives object coordinates, computes the
optimal configuration for Pan-Tilt-Zoom (PTZ) cameras, and
periodically transmits this information to PTZ control.
PTZ Control: It is embedded within smart cameras and
adjusts the camera based on PTZ parameters from the object
tracker, serving as the system’s actuator.
User Interface: The application presents a user interface by
streaming selected video feeds containing tracked objects to
the user’s device.

Camera Motion
Detector

Object
Detector

User
Interface

Object
Tracker

PTZ
Control

RAW VIDEO STREAM MOTION VIDEO STREAM DETECTED OBJECT

OBJECT LOCATION

PTZ PARAMS [periodic 10ms]

Fig. 1: Surveillance Case-study Application [8].

Figure 1 shows the graph of the surveillance application
containing application modules and edges and Table I shows
the processing requirement and data size of tuples considered
in this application.

III. RELATED WORK

Energy consumption across modern computing environ-
ments is increasingly recognized as a critical issue, driven
by the proliferation of diverse computing components and
applications [12]. Despite growing interest in understanding
and mitigating this energy use, a lot of existing research
focuses on field-specific analyses: IoT, cloud computing, and
networking provide specific methods and tools for the analysis
(and reduction) of energy consumption of their infrastructure
in isolation. Our work, by contrast, focuses on building an
end-to-end energy model, as there is limited research inte-
grating different components into a single, unified model or
framework.

Li et al. [1] investigate an end-to-end energy consumption
model for edge-cloud-based IoT platforms, using a camera-
based traffic monitoring application as a case study. They
considered three main infrastructure components for IoT
service deployment: IoT devices, wired communication net-
works, and cloud infrastructure. Energy consumption for each



component is modeled through a combination of simulation
and measurement. However, their model focuses on energy
consumption from the device perspective and does not account
for application-level energy consumption on each device. Ad-
ditionally, their work addresses a single-application scenario
rather than multi-application scenarios. Another broad study,
by Ahvar et al. [4], explores the energy impact of IoT wifi de-
vices on Cloud and telecommunication infrastructure through
simulations and real measurements. They develop an end-to-
end energy model, focusing on low-bandwidth IoT applica-
tions like smart meters and sensors. This work underscores
the significance of accurately assessing the energy footprint
of IoT deployments and emphasizes the need for energy
optimization strategies. Neither of these end-to-end studies
combines networking and computing energy by focusing on
modeling the energy consumption of applications, nor do they
address multi-application scenarios. To the best of our knowl-
edge, our work is the first to target a fine-grained simulation-
based approach for studying per-application energy behavior
in multi-application edge-cloud environments. To facilitate this
novel approach, we provide new, reusable enhancements to the
iFogSim simulation framework, thus enabling comprehensive
end-to-end energy-consumption analysis of single applications
deployed in a multi-application computing continuum.

The original iFogSim has been often used to assess energy
efficiency of edge computing. Research using iFogSim can
be typically classified into two categories: studies that model
applications to compare energy consumption between cloud-
only and edge-computing scenarios, often showing the greater
efficiency of edge computing [10], [11], and those that propose
application placement strategies, demonstrating their efficiency
through case studies [13]. Unlike these studies, our research
adapts the simulator to support a multi-application environ-
ment, focuses on the energy consumption of application mod-
ules rather than just device-level consumption, and combines
both communication and processing energy consumption.

IV. PROPOSED FINE-GRAINED SIMULATION APPROACH

Our goal is to use iFogSim to study and analyze the end-
to-end energy consumption of applications. An existing study
revealed that the original iFogSim only reflects devices’ energy
consumption and does not account for application energy
consumption [14]. Although the study proposed improvements
to the framework also to report the energy consumption
of applications, we identify two further iFogSim limitations
that hinder a realistic estimation of application energy in
multi-application scenarios: 1) Lack of communication en-
ergy consumption analysis, and 2) Coarse-grain modeling and
reporting. The following sections present our contributions
in tackling these limitations, and thus improve iFogSim to
support more realistic scenarios.

A. Networking Energy Model

iFogSim focuses on the computation energy consumption,
i.e., the energy spent by the processing application tasks,
and neglects the energy consumption related to networking

and communication. We have extended the simulator with
two additional carefully selected energy models, chosen from
a range of options, thus enabling it to also account for
communication energy consumption.

Modeling networking and communication energy consump-
tion is a well-explored area. Much of this research has primar-
ily focused on modeling the energy consumption of devices
for various technologies. For such modeling, researchers often
rely on platforms, such as NS-3, which is widely recognized
and utilized for implementing different networking models and
technologies [4], [15], [16].

While NS-3 is a powerful tool for studying and analyzing
networking energy at the device level, it is not suitable for
application-level energy estimation research. NS-3’s low-level
models are too detailed for this purpose.A more abstract, high-
level simulator is needed to consider networking infrastructure
concerning applications.

To address this need, we explored various models for net-
working energy consumption, including the ECOFEN model,
flow-based models, and combinations of wired and wireless
communication networks [16]–[18]. Our objective is to de-
velop a general framework capable of estimating the end-to-
end energy consumption of applications. Thus, we need net-
working models that do not require details about the number
of hops between devices and their specific technologies, as
such information is often obscured from users.

For this reason, models like ECOFEN, which rely on
detailed, device-centric information, are not well-suited to our
purpose. Instead, we prefer application-centric models that
estimate the energy consumption of application services, sup-
port multi-application scenarios, and attribute consumption to
specific applications. Consequently, we consider a flow-based
model to estimate the communication energy consumption of
applications [17]. According to this model, the continuum
includes two types of devices: shared devices and end-user
equipment, each with specific energy models [17].

1) Networking Energy Model for Shared Devices: Shared
devices, such as fog devices and cloud data centers, are
capable of simultaneously serving multiple applications and
supporting multitenancy. Among these devices, the network
interface card (NIC) is the responsible unit for transferring
data for applications while consuming energy. Monitoring the
energy consumption of this unit provides a representation of
networking energy consumption [19].

Given the shared nature of these devices, it becomes im-
portant to track the active time of the NIC unit for each
application. This is because the NIC may concurrently transfer
data for multiple applications on different ports. In our chosen
flow-based model for these devices, we monitor the energy
consumption of the NIC unit across distinct active intervals
for each application. Additionally, we account for intervals
during which the NIC transfers data for multiple applications
on different ports. The model considers the allocation of this
energy to the active applications based on their respective
bandwidth usage ratios [17].



Equation 1 illustrates the active energy consumption model
utilized for a shared device. According to this model, appli-
cations should pay for active energy based on the size of the
transferred data. Equation 2, on the other hand, shows the idle
energy consumption for a shared device, using the flow-based
model. Based on this equation, applications should pay for
idle energy during their active intervals, proportionate to their
bandwidth ratio.

Esh
active =

∑
intervals

(
BWi × Tinterval ×

Pmax − Pidle

BWaggregated

)
(1)

Esh
idle =

∑
intervals

(
BWi × Tinterval ×

Pidle

BWused

)
(2)

The parameters for both models are:
• Pmax is the maximum power consumption,
• Pidle is the idle power consumption,
• Tinterval is the duration of each active interval,
• BWi is the bandwidth of application i,
• BWaggregated is the aggregate bandwidth of both the

uplink and downlink of NIC, and
• BWused is the used bandwidth of links - uplink, down-

link, or both, depending on which links are active.
2) Networking Energy Model for End-User Devices: End-

user devices are specific to individual users within their
premises. Depending on the type of these devices, users can
access various services and applications, such as email or
social media. We consider a time-based energy model for end-
user devices [17]. According to this model, as the device is
exclusively dedicated to users and their applications, applica-
tions should pay for the total idle energy consumption of the
device, proportionate to their active time ratio [17]. However,
this model addresses time-shared scenarios and does not
account for space-shared scenarios, as seen in iFogSim, where
devices have dedicated bandwidth for uplink and downlink
communication, allowing data transmission in a space-shared
approach. Consequently, we modified the time-based model to
support space-shared scenarios and consider transferring data
for multiple applications at the same time by considering the
active time of the NIC.

Equation 3 illustrates the time-based active energy con-
sumption model utilized for end-user devices. According to
this model, applications should pay for active energy during
their active intervals, proportionate to their bandwidth ratio.

Equation 4 shows the modified versions of time-based idle
energy consumption, innovatively adapted and extended to
address multi-application scenarios. Based on this equation,
applications should pay for the total idle energy consumption
of the device based on their bandwidth ratio.

Euser
active =

∑
intervals

(
BWi × Tinterval ×

Pmax − Pidle

BWaggregated

)
(3)

Euser
idle = Pidle ×

(
Simulation time
NIC active time

)
×

∑
intervals

Tinterval ×
(

BWi

BWused

)
(4)

Finally, all these models are symbolic, and therefore generic.
However, to use them to report the energy of communication in
user-relevant applications, and combine them with models for
computation energy consumption, we need to use calibrated
values for the parameters. In this work we use data from
literature [17]; the values are presented in Table II.

TABLE II: Power Parameters of Network Equipment [17].

Device Type Device Name Power (Watt)
Maximum Idle

Shared
Cloud 12300 1070
Proxy Server 4550 4095
Router 4550 4095

End-user Smart Camera 4.6 2.8

B. Fine-Grained Energy Reporting

A second improvement we made in iFogSim concerns the
reporting of energy consumption. To this end, we add fine-
grained, per-VM energy consumption calculation and reporting
for both computing and networking energy consumption.

1) Computation Energy: Originally, iFogSim only reports
the computation energy consumption of devices and does not
consider the energy consumption of applications. A previous
study [14] showed how iFogSim can be enhanced to report
the energy consumption of applications in single-application
scenarios. However, in real-life situations, multi-tenancy and
multi-application scenarios are common. Thus, additional
changes are needed to accurately account for and report per-
application energy consumption for such scenarios [20].

Moreover, in iFogSim, applications are divided into mul-
tiple application modules, each with different requirements.
Therefore, having the energy consumption data of these ap-
plication modules could help users identify energy-intensive
components of applications for optimization purposes.

To address these needs, we not only improved iFogSim to
support the reporting of application energy consumption in
multi-application scenarios, but also enhanced it to provide
insight into the energy consumption of virtual machines host-
ing application modules. This fine-grained energy accounting
considers the MIPS allocation ratio of VMs, allowing for the
characterization of the computation energy consumption at the
application module level. Specifically, iFogSim divides and
assigns its computation capacity, measured in MIPS, among
its running VMs. In accounting for the energy consumption of
VMs, we take into account their MIPS share ratio to accurately
assess the energy consumption of each VM.

2) Networking energy: In iFogSim, tuples represent the
requirements of incoming tasks for each application module.
Whenever an application module processes its incoming tuple,
it generates a new one to send to another application module.
Thus, tuples transmission between modules contributes to the
networking energy consumption [8].

To enhance reporting of energy consumption in iFogSim,
we implemented our networking energy models (see Sec-
tion IV-A) for each device NIC, based on their type (shared
or end-user) in iFogSim with fine granularity. Thus, iFogSim
can report the energy consumption of each tuple, providing
users with detailed information about the networking and



TABLE III: Fog devices for our continuum architecture [8].

Device Computational RAM Power [W]
type Capacity [MIPS] [GB] Max Idle
Cloud 44800 40 1648.0 1332.0
Proxy server 2800 4 107.3 83.4
Router 2800 4 107.3 83.4
Smart camera 500 1 87.5 82.4

communication energy consumption of tasks. Consequently,
users can conduct experiments to analyze placement policies,
to adjust data sizes of sent tuples, or to improve the energy
characteristics of NICs in devices.

V. EVALUATION

To validate our fine-grained per-application approach to
energy consumption analysis and reporting, we propose several
experiments featuring a representative computing continuum
architecture, one application with multiple configurations, and
different multi-application scenarios. This section describes
our experimental setup, the experiments, and provides an
analysis of the results.

A. Experimental Setup

Figure 2 depicts the architecture considered for the contin-
uum in our experiments. Table III shows the configuration
of the fog devices in our case study. Each component is
defined by its computational capacity in million instructions
per second (MIPS), reflecting its frequency, maximum power
consumption (i.e., when fully utilized), and idle power con-
sumption, as well as the size of RAM.

Cloud

Proxy
Server

Router

Smart

Camera

Smart

Camera

Smart

Camera

Smart

Camera

100 ms

2 ms

2 ms

Fig. 2: Continuum architecture including links latencies.

To illustrate our fine-grained simulator’s capabilities to ana-
lyze per-application energy consumption in a multi-application
context, we propose two classes of experiments: we investigate
the impact of different mapping scenarios and application
workloads on energy consumption. For these experiments, we
configure two instances of the surveillance case-study (see
Section II-B) , and simulate both applications concurrently,
with cameras initiating frame transmission for processing
every 5ms [8]. Simulations are carried out for a duration of
2000ms (thus, about 400 frames).

B. Mapping Scenario Analysis

We explore different mapping scenarios for the two applica-
tions. We assume the edge device (the smart camera in our case
study) can do some processing, and therefore, considering the
surveillance application requirements, we assign the motion
detector modules to the smart cameras in all scenarios. We also
assign the user interface module to the cloud in all scenarios.

TABLE IV: Mapping scenarios of surveillance case study for
execution models.

Scenario Application Mapping

Router only
App 1 Object detector, Router

Object tracker, Router

App 2 Object detector, Router
Object tracker, Router

Router Proxy
App 1 Object detector, Router

Object tracker, Router

App 2 Object detector, Proxy
Object tracker, Proxy

Router Cloud
App 1 Object detector, Router

Object tracker, Router

App 2 Object detector, Cloud
Object tracker, Cloud

Proxy only
App 1 Object detector, Proxy

Object tracker, Proxy

App 2 Object detector, Proxy
Object tracker, Proxy

Proxy Cloud
App 1 Object detector, Proxy

Object tracker, Proxy

App 2 Object detector, Cloud
Object tracker, Cloud

Cloud only
App 1 Object detector, Cloud

Object tracker, Cloud

App 2 Object detector, Cloud
Object tracker, Cloud

Module Router Proxy
App 1 Object detector, Router

Object tracker, Proxy

App 2 Object detector, Router
Object tracker, Proxy

We consider different devices as targets for the other two
modules (Object detector and Object tracker). Table IV il-
lustrates all mapping scenarios with the target devices of the
modules in each scenario.

Since the capacity of fog nodes is limited, the ordering
of processes affects the latency and energy consumption of
applications when their modules run on the same target device.
Therefore, we consider two types of scenarios:

• Application-Wise Ordering: assigning modules of one
application first, and then proceed with the modules of
the next application. For example, we decide on the
placement of the Object detector and Object tracker
modules in the first application and then determine the
placement of these two modules in the second application.

• Module-Wise Ordering: sequentially assigning the mod-
ules of both applications. For example, we start with
the Object detector module for both applications before
moving on to the Object tracker.

We run separate simulations for all these scenarios and ana-
lyze the energy consumption of computing and communication
for each scenario and each application.

Both the computation and networking energy, as depicted
in Figures 3 and 4, respectively, show better results in the
Router Only scenario where modules of both applications are
assigned to the router. However, when considering the high
latency of this scenario caused by the limited capacity of the



Router Only

Router Proxy

Router Cloud

Proxy Only

Proxy Cloud

Cloud Only

Module Router Proxy0

200

400

600

E
ne

rg
y

[j
]

App1 Motion Detector App2 Motion Detector App1 Object Detector App2 Object Detector

App1 Object Tracker App2 Object Tracker App1 UI App2 UI

Fig. 3: Computational energy consumption of VMs across
different mapping scenarios when running two applications
concurrently.

Router Only

Router Proxy

Router Cloud

Proxy Only

Proxy Cloud

Cloud Only

Module Router Proxy0

100

200

300

E
ne

rg
y

[j
]

App1 Motion Video Stream App2 Motion Video Stream App1 Object Location App2 Object Location

App2 Detected Object App2 Detected Object App1 PTZ Params App2 PTZ Params

Fig. 4: Networking energy consumption of Tuples across
different mapping scenarios when running two applications
concurrently.

device and the resulting overflow, the importance of offloading
to the cloud becomes evident, as illustrated in Figure 5.
”Overflow” occurs when the number of tasks exceeds the
device’s capacity within a time interval, leading to unprocessed
tasks queued for subsequent intervals. This backlog can grow
over time, indicating overloaded processing resources.

Additionally, by comparing energy and latency across dif-
ferent scenarios, we find that Module-Wise mapping generally
yields better results than Application-Wise mapping, and this
makes Module-Wise mapping the better overall choice. For
instance, in the Router Cloud scenario, where two modules
of the first application are assigned to the router and those of
the second application are assigned to the cloud, the mapping
is ApplicationWise.

Additionally, Figures 3 and 4 show that, in some scenarios
– such as those where parts of the application are offloaded to
high-level devices like the cloud, which are distant from the
user – networking energy consumption becomes significant.
This underscores the importance of considering this network-
ing energy consumption as part of the simulation results.

C. Analysing different workloads

Higher-resolution videos improve object detection accuracy,
but demand more computational resources and bandwidth for
data transfer. Thus, we expect that lowering video resolution
conserves computing resources, reduces network usage, and
may reduce energy consumption. To test this hypothesis, we
conducted experiments with various resolutions, examining

Router Only

Router Proxy

Router Cloud

Proxy Only

Proxy Cloud

Cloud Only

Module Router Proxy0

200

400

600

D
el

ay
[m

se
c]

App1 Delay App2 Delay

Fig. 5: Observed delay across different mapping scenarios
when running two applications concurrently.

Router Only

Router Proxy

Router Cloud

Proxy Only

Proxy Cloud

Cloud Only

Module Router Proxy

0

200

400

600

H L O H L O H L O H L O H L O H L O H L O
E

ne
rg

y
[j

]

Motion Detector HighRes Motion Detector LowRes Motion Detector OrgRes

Object Detector HighRes Object Detector LowRes Object Detector OrgRes

Object Tracker HighRes Object Tracker LowRes Object Tracker OrgRes

UI HighRes UI LowRes UI OrgRes

Fig. 6: Energy consumption of VMs of first application with
different resolution across different mapping scenarios.

how these workload changes affect the energy consumption
of various application modules.

TABLE V: Application requirements with different resolutions
Tuple type Resolution CPU load [MI] Data Size [B]

RAW VIDEO STREAM
Original 1000 20000
High Res. 2000 40000
Low Res. 500 10000

MOTION VIDEO STREAM
Original 2000 2000
High Res. 4000 4000
Low Res. 1000 1000

DETECTED OBJECT
Original 500 2000
High Res. 1000 4000
Low Res. 250 1000

OBJECT LOCATION
Original 1000 100
High Res. 1000 100
Low Res. 1000 100

PTZ PARAMS
Original 100 28
High Res. 100 28
Low Res. 100 28

Table V displays the computation requirements and data
sizes of sending tuples for each application resolution. To
model high-resolution applications, we doubled these values,
while for low-resolution applications, we halved the values.

Figure 6 illustrates VM energy consumption for one applica-
tion across different scenarios and resolutions. Unexpectedly,
the energy consumption of VMs hosting higher-resolution
applications occasionally showed comparable or lower en-
ergy consumption than VMs running the original resolution.
Similarly, we observed unexpected energy consumption for
transferring tuples, where, in some scenarios, the original reso-
lution consumed more energy than the high-resolution version.



Router Only

Router Proxy

Router Cloud
Proxy Only

Proxy Cloud

Cloud Only

Module Router Proxy

0

50

100

150

H-1 L-1 O-1 H-2 L-2 O-2 H-1 L-1 O-1 H-2 L-2 O-2 H-1 L-1 O-1 H-2 L-2 O-2 H-1 L-1 O-1 H-2 L-2 O-2 H-1 L-1 O-1 H-2 L-2 O-2 H-1 L-1 O-1 H-2 L-2 O-2 H-1 L-1 O-1 H-2 L-2 O-2

E
ne

rg
y

[j
]

App1 Motion Detector App1 Object Detector App1 Object Tracker App1 UI
App2 Motion Detector App2 Object Detector App2 Object Tracker App2 UI

Fig. 7: Energy consumption of VMs of applications with different resolution across different mapping scenarios.

Router Only

Router Proxy

Router Cloud
Proxy Only

Proxy Cloud

Cloud Only

Module Router Proxy

0

50

100

150

H-1 L-1 O-1 H-2 L-2 O-2 H-1 L-1 O-1 H-2 L-2 O-2 H-1 L-1 O-1 H-2 L-2 O-2 H-1 L-1 O-1 H-2 L-2 O-2 H-1 L-1 O-1 H-2 L-2 O-2 H-1 L-1 O-1 H-2 L-2 O-2 H-1 L-1 O-1 H-2 L-2 O-2

E
ne

rg
y

[j
]

App1 Motion Video Stream App1 Object Location App1 PTZ Params App1 Detected Object
App2 Motion Video Stream App2 Object Location App2 PTZ Params App2 Detected Object

Fig. 8: Tuples networking energy consumption of applications with different resolution across different mapping scenarios.

Router Only

Router Proxy

Router Cloud
Proxy Only

Proxy Cloud

Cloud Only

Module Router Proxy

0

50

100

150

200

H-1 L-1 O-1 H-2 L-2 O-2 H-1 L-1 O-1 H-2 L-2 O-2 H-1 L-1 O-1 H-2 L-2 O-2 H-1 L-1 O-1 H-2 L-2 O-2 H-1 L-1 O-1 H-2 L-2 O-2 H-1 L-1 O-1 H-2 L-2 O-2 H-1 L-1 O-1 H-2 L-2 O-2

D
el

ay
[m

se
c]

App1 HighRes Delay App1 LowRes Delay App1 OrgRes Delay
App2 HighRes Delay App2 LowRes Delay App2 OrgRes Delay

Fig. 9: Average delay of applications with different resolution across different mapping scenarios.

Furthermore, the average delay for the original resolution was
higher compared to the delay of the high resolution.

We analyzed the application’s behavior under different
resolution settings, from 0.2x to 5x of the original, as depicted
in Figure 10. Initially, increasing the resolution caused router
overflow, and increased the delay. Beyond a certain resolution,
however, the camera’s processing capacity became the bottle-
neck, reducing the emission rate and, consequently, lowering
the delay. To mitigate overflow and maintain reliability, we
doubled the device capacities and extended the camera emis-
sion interval to 20ms.

We further observed unexpectedly high energy consumption
for VMs when one or both applications were running on
the cloud. We investigated the simulator code to address
this issue. In iFogSim, each event (e.g., tuple arrival or
completion) triggers functions that adjust VM states, update
energy consumption, and verify tuple completion status. We

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

200

400

600

800

1,000

1,200

Resolution

A
ve

ra
ge

D
el

ay

Fig. 10: Average delay of a single application across different
resolution scales in Router Only mapping scenario.

found that the simulator only allocated MIPS to VMs with
running tuples, neglecting the target VM of arriving tuples.
This led to infinite finish times estimates, and higher energy
consumption for some VMs. We therefore improved the sim-
ulator to allocate MIPS to both running VMs and target VMs,
thus enabling accurate finish time estimation and observing
the correct/expected energy consumption.



Figures 7, 8, and 9 illustrate computation energy con-
sumption of VMs, networking energy consumption of send-
ing tuples, and average delay of applications with different
resolution across various scenarios, respectively. As depicted
in these figures, in scenarios where both apps are assigned to
the same device, such as ’Router Only’, or scenarios where
device characteristics are identical, such as ’Router Proxy’,
the energy consumption of the applications is similar. In
scenarios where one of the applications is assigned to the
cloud, like ’Router Cloud’, the energy consumption of the
application assigned to the cloud is higher than the other
one, highlighting the better energy efficiency of assigning
application modules to devices closer to the user, as expected.

In the ’Cloud Only’ scenario, we observed slight differ-
ences in application energy consumption. This variation stems
from iFogSim’s consideration of a minimum event time of 0.1,
affecting tuple finish time estimations. As a result of small
tuple sizes and ample cloud capacity, tuples finish processing
earlier than estimated, influencing energy updates based on
the arrival time of other tuples. This, in turn, leads to varied
energy consumption.

Based on these results, it becomes evident that the energy
consumption and average delay of applications improved in
module-wise scenarios. Furthermore, this experiment demon-
strates that reducing the resolution of applications and offload-
ing them to edge nodes, closer to the users, can achieve better
energy efficiency and latency.

VI. CONCLUSION AND DISCUSSION

With the increasing use of digital services, concerns are
raised about the growing energy footprint and environmental
impact of ICT. A better understanding of the energy consump-
tion of digital services is needed to enable stakeholders to take
action and limit the environmental impact of the field.

In this study, we contribute to this call for action by
enhancing state-of-the-art continuum simulators to improve
energy consumption estimates by introducing an enhanced
version of the iFogSim framework for multi-application sim-
ulations. Our approach enables a comprehensive analysis of
application energy behavior across diverse mapping scenarios
by implementing fine-grained models for both computation
and networking energy consumption.

Through experiments focused on a surveillance application
case study, provided by iFogSim, we demonstrate the power of
this simulation approach in identifying energy-intensive mod-
ules and guiding informed decisions on mapping strategies,
architectural configurations, and workload resolutions.

Our study has made contributions, including developing
and implementing energy models for Network Interface Cards
(NICs) of different network devices in iFogSim, along with
the detailed characterization and comparison of energy con-
sumption across diverse scenarios.

However, the accuracy of iFogSim’s results is inherently
limited to the system architecture, requiring careful param-
eter calibration. Key challenges include modeling and vali-
dating different communication technologies and addressing

application-specific data variability, which impacts energy con-
sumption and deployment strategies. Conducting real-world
validation and refining energy models for diverse ICT archi-
tectures are crucial steps for improving model accuracy and
reliability. Future research should also develop best practices
for energy-efficient digital services. Tackling these challenges
will enhance the accuracy and utility of energy consumption
models, leading to more sustainable ICT practices.

REFERENCES

[1] Y. Li et al., “End-to-end energy models for edge cloud-based iot
platforms: Application to data stream analysis in iot,” Future Generation
Computer Systems, vol. 87, pp. 667–678, 2018.

[2] R. Oma et al., “A tree-based model of energy-efficient fog computing
systems in iot,” in CISIS. Springer, 2019, pp. 991–1001.

[3] W. Tang et al., “An offloading approach in fog computing environment,”
in 2018 IEEE SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI.
IEEE, 2018, pp. 857–864.

[4] E. Ahvar et al., “Estimating energy consumption of cloud, fog, and
edge computing infrastructures,” IEEE Transactions on Sustainable
Computing, vol. 7, no. 2, pp. 277–288, 2019.

[5] M. Jansen et al., “Continuum: Automate infrastructure deployment and
benchmarking in the compute continuum,” in FastContinuum’23, in
conjunction with ICPE, Portugal, April, 2023.

[6] A. Brogi et al., “How to place your apps in the fog: State of the art and
open challenges,” Software: Practice and Experience, vol. 50, no. 5, pp.
719–740, 2020.

[7] R. Mahmud et al., “Modelling and simulation of fog and edge com-
puting environments using ifogsim toolkit,” Fog and edge computing:
Principles and paradigms, pp. 1–35, 2019.

[8] H. Gupta et al., “ifogsim: A toolkit for modeling and simulation of
resource management techniques in the internet of things, edge and fog
computing environments,” Software: Practice and Experience, vol. 47,
no. 9, pp. 1275–1296, 2017.

[9] R. N. Calheiros et al., “Cloudsim: a toolkit for modeling and simulation
of cloud computing environments and evaluation of resource provision-
ing algorithms,” Software: Practice and experience, vol. 41, no. 1, pp.
23–50, 2011.

[10] K. S. Awaisi et al., “Towards a fog enabled efficient car parking
architecture,” IEEE Access, vol. 7, pp. 159 100–159 111, 2019.

[11] I. Sarkar et al., “Fog computing based intelligent security surveillance
using ptz controller camera,” in 10th International Conference on
ICCCNT. IEEE, 2019, pp. 1–5.

[12] C. Preist et al., “Analyzing end-to-end energy consumption for digital
services,” Computer, vol. 47, no. 5, pp. 92–95, 2014.

[13] M. Mahmoud et al., “Towards energy-aware fog-enabled cloud of things
for healthcare,” Computers & Electrical Engineering, vol. 67, pp. 58–69,
2018.

[14] S. Baneshi et al., “Estimating the energy consumption of applications
in the computing continuum with ifogsim,” in International Conference
on High Performance Computing. Springer, 2023, pp. 234–249.

[15] P. Serrano et al., “Per-frame energy consumption in 802.11 devices and
its implication on modeling and design,” IEEE/ACM Transactions on
networking, vol. 23, no. 4, pp. 1243–1256, 2014.

[16] A.-C. Orgerie et al., “Ecofen: An end-to-end energy cost model and
simulator for evaluating power consumption in large-scale networks,”
in 2011 IEEE International Symposium on a World of Wireless, Mobile
and Multimedia Networks. IEEE, 2011, pp. 1–6.

[17] F. Jalali et al., “Fog computing may help to save energy in cloud com-
puting,” IEEE Journal on Selected Areas in Communications, vol. 34,
no. 5, pp. 1728–1739, 2016.

[18] H. Casanova, “Simgrid: A toolkit for the simulation of application
scheduling,” in Proceedings First IEEE/ACM International Symposium
on Cluster Computing and the Grid. IEEE, 2001, pp. 430–437.

[19] P. Mahadevan et al., “A power benchmarking framework for network
devices,” in NETWORKING 2009: 8th International IFIP-TC 6 Net-
working Conference, Aachen, Germany, May 11-15, 2009. Proceedings
8. Springer, 2009, pp. 795–808.

[20] I. Odun-Ayo et al., “Cloud multi-tenancy: Issues and developments,” in
Companion Proceedings of the10th International Conference on utility
and cloud computing, 2017, pp. 209–214.


